Preface |
|
xxiii | |
Acknowledgments |
|
xxv | |
Acronyms |
|
xxvii | |
Notation |
|
xxxv | |
1 Opportunities and Challenges of Nanoscale Technology and Systems |
|
1 | (24) |
|
|
1 | (2) |
|
1.2 Mixed-Signal Circuits and Systems |
|
|
3 | (2) |
|
1.2.1 Different Processors: Electrical to Mechanical |
|
|
3 | (1) |
|
1.2.2 Analog versus Digital Processors |
|
|
3 | (1) |
|
1.2.3 Analog, Digital, Mixed-Signal Circuits and Systems |
|
|
3 | (1) |
|
1.2.4 Two Types of Mixed-Signal Systems |
|
|
4 | (1) |
|
1.3 Nanoscale CMOS Circuit Technology |
|
|
5 | (4) |
|
1.3.1 Developmental Trend |
|
|
5 | (1) |
|
1.3.2 Nanoscale CMOS Alternative Device Options |
|
|
5 | (3) |
|
1.3.3 Advantages and Disadvantages of Technology Scaling |
|
|
8 | (1) |
|
1.3.4 Challenges in Nanoscale Design |
|
|
8 | (1) |
|
1.4 Power Consumption and Leakage Dissipation Issues in AMS-SoCs |
|
|
9 | (2) |
|
1.4.1 Power Consumption in Various Components in AMS-SoCs |
|
|
9 | (1) |
|
1.4.2 Power and Leakage Trend in Nanoscale Technology |
|
|
9 | (1) |
|
1.4.3 The Impact of Power Consumption and Leakage Dissipation |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.5.1 Types of Parasitics |
|
|
11 | (1) |
|
1.5.2 The Impact of Parasitics |
|
|
11 | (1) |
|
1.5.3 Challenges to Account Parasitics during Design |
|
|
12 | (1) |
|
1.6 Nanoscale Circuit Process Variation Issues |
|
|
12 | (1) |
|
1.6.1 Types of Process Variation |
|
|
12 | (1) |
|
1.6.2 The Impact of Process Variation |
|
|
12 | (1) |
|
1.7 The Temperature Variation Issue |
|
|
13 | (2) |
|
1.7.1 The Issue of Temperature |
|
|
13 | (1) |
|
1.7.2 The Impact of Temperature |
|
|
14 | (1) |
|
1.7.3 Challenges to Account through PVT-Aware Design |
|
|
14 | (1) |
|
1.8 Challenges in Nanoscale CMOS AMS-SoC Design |
|
|
15 | (1) |
|
1.8.1 AMS-SoC Design Flow |
|
|
15 | (1) |
|
1.8.2 AMS-SoC Unified Optimization |
|
|
15 | (1) |
|
1.9 Tools for Mixed-Signal Circuit Design |
|
|
16 | (2) |
|
1.9.1 The AMS-SoC Design Issue |
|
|
16 | (1) |
|
1.9.2 Languages for AMS-SoC Design |
|
|
16 | (1) |
|
1.9.3 Tools for AMS-SoC Design and Simulation |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (6) |
2 Emerging Systems Designed as Analog/Mixed-Signal System-on-Chips |
|
25 | (40) |
|
|
25 | (1) |
|
2.2 Atomic Force Microscope |
|
|
25 | (2) |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
27 | (4) |
|
|
27 | (2) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
31 | (1) |
|
2.4.2 Home Video Systems Background: From Video Cassette Player to Blu-Ray Player |
|
|
31 | (1) |
|
|
31 | (1) |
|
2.5 Drug-Delivery Nano-Electro-Mechanical Systems |
|
|
32 | (2) |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
2.6 Digital Video Recorder |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
35 | (1) |
|
2.7 Electroencephalogram System |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
35 | (1) |
|
2.8 GPS Navigation Device |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
2.9 GPU-CPU Hybrid System |
|
|
37 | (3) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (2) |
|
2.10 Networked Media Tank |
|
|
40 | (1) |
|
|
40 | (1) |
|
|
40 | (1) |
|
|
41 | (1) |
|
2.11 Net-Centric Multimedia Processor |
|
|
41 | (3) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
43 | (1) |
|
2.12 Radiation Detection System |
|
|
44 | (2) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
2.13 Radio Frequency Identification Chip |
|
|
46 | (3) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (2) |
|
2.14 Secure Digital Camera |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (2) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
2.16 Slate Personal Computer |
|
|
52 | (2) |
|
|
52 | (1) |
|
2.16.2 Background: The Developmental Trend of General-Purpose Computer Reaches Slate PC |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
54 | (2) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
2.18 Software-Defined Radio |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
56 | (1) |
|
2.19 TV Tuner Card for PCs |
|
|
57 | (2) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
58 | (1) |
|
2.20 Universal Remote Control |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
60 | (5) |
3 Nanoelectronics Issues in Design for Excellence |
|
65 | (92) |
|
|
65 | (1) |
|
3.2 Design for eXcellence |
|
|
65 | (2) |
|
3.3 Different Types of Nanoelectronic Devices |
|
|
67 | (24) |
|
3.3.1 Nanoscale Classical SiO2/Polysilicon FET |
|
|
68 | (2) |
|
3.3.2 High-κ and Metal-Gate Nonclassical FET |
|
|
70 | (2) |
|
3.3.3 Multiple Independent Gate FET |
|
|
72 | (7) |
|
3.3.4 Carbon Nanotube FET |
|
|
79 | (2) |
|
|
81 | (3) |
|
3.3.6 Single-Electron Transistor |
|
|
84 | (1) |
|
3.3.7 Thin-Film Transistor |
|
|
85 | (1) |
|
|
86 | (2) |
|
|
88 | (1) |
|
3.3.10 Memdevices: Memristor, Memcapacitor, and Meminductor |
|
|
88 | (3) |
|
3.4 Nanomanufacturing: The Origin and Source of Process Variations |
|
|
91 | (7) |
|
3.4.1 Classical CMOS Fabrication Process |
|
|
93 | (2) |
|
3.4.2 Carbon Nanotube FET Fabrication Process |
|
|
95 | (1) |
|
3.4.3 FinFET Fabrication Process |
|
|
95 | (1) |
|
3.4.4 Graphene FET Fabrication Process |
|
|
96 | (1) |
|
3.4.5 Tunnel FET Fabrication Process |
|
|
97 | (1) |
|
3.4.6 Memristor Fabrication Process |
|
|
98 | (1) |
|
3.5 The Issue of Process Variation |
|
|
98 | (9) |
|
3.5.1 Types of Process Variation |
|
|
99 | (1) |
|
3.5.2 Impact on Device Parameters |
|
|
100 | (3) |
|
3.5.3 Design Phase Incorporation of Process Variation |
|
|
103 | (4) |
|
|
107 | (2) |
|
3.7 The Power Issue in Nanoelectronic Circuits |
|
|
109 | (13) |
|
3.7.1 Power Dissipation in Nanoscale Classical CMOS Circuits |
|
|
111 | (9) |
|
3.7.2 Power Dissipation in Nanoscale High-κ and Metal-Gate FET |
|
|
120 | (1) |
|
3.7.3 Power Dissipation in Double-Gate FinFET |
|
|
121 | (1) |
|
3.8 The Issue of Parasitics in Nanoelectronic Circuits |
|
|
122 | (11) |
|
3.8.1 Different Types of Parasitics |
|
|
122 | (1) |
|
|
122 | (3) |
|
3.8.3 Interconnect Parasitics |
|
|
125 | (8) |
|
|
133 | (2) |
|
3.10 The Reliability Issue |
|
|
135 | (6) |
|
3.10.1 Hot Carrier Injection |
|
|
135 | (2) |
|
3.10.2 Negative Bias Temperature Instability |
|
|
137 | (1) |
|
|
137 | (1) |
|
3.10.4 Time-Dependent Dielectric Breakdown |
|
|
138 | (1) |
|
|
139 | (2) |
|
|
141 | (1) |
|
|
141 | (4) |
|
3.11.1 Information Protection Issue |
|
|
142 | (1) |
|
3.11.2 Information Leakage Issue |
|
|
143 | (1) |
|
3.11.3 Chip Intellectual Property Protection Issue |
|
|
143 | (1) |
|
3.11.4 Malicious Design Modifications Issue |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
145 | (12) |
4 Phase-Locked Loop Component Circuits |
|
157 | (58) |
|
|
157 | (1) |
|
4.2 Phase-Locked Loop System Types |
|
|
158 | (2) |
|
4.3 Phase-Locked Loop System: A Broad Overview |
|
|
160 | (4) |
|
|
160 | (1) |
|
4.3.2 Block-Level Representation |
|
|
160 | (1) |
|
4.3.3 Characteristics, or Performance Metrics |
|
|
161 | (2) |
|
|
163 | (1) |
|
|
164 | (7) |
|
|
164 | (1) |
|
4.4.2 Oscillator Characteristics, or Performance Metrics |
|
|
165 | (5) |
|
4.4.3 Comparison of Oscillators |
|
|
170 | (1) |
|
|
171 | (6) |
|
|
171 | (1) |
|
|
171 | (2) |
|
|
173 | (2) |
|
|
175 | (2) |
|
4.6 Current-Starved Voltage Controlled Oscillators |
|
|
177 | (7) |
|
|
177 | (1) |
|
|
177 | (2) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
179 | (4) |
|
4.6.6 45-nm Double-Gate FinFET |
|
|
183 | (1) |
|
4.7 LC-Tank Voltage-Controlled Oscillator |
|
|
184 | (6) |
|
|
184 | (2) |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
188 | (2) |
|
4.8 Relaxation Oscillators |
|
|
190 | (3) |
|
4.8.1 Low-Power Relaxation Oscillator |
|
|
191 | (1) |
|
4.8.2 Memristor Relaxation Oscillator |
|
|
191 | (1) |
|
4.8.3 Memristor-Based Schmitt Trigger Oscillator |
|
|
192 | (1) |
|
4.9 Phase-Frequency Detectors |
|
|
193 | (2) |
|
4.9.1 D Flip-Flop-Based PFD |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (3) |
|
|
195 | (1) |
|
|
196 | (2) |
|
|
198 | (2) |
|
|
200 | (3) |
|
|
200 | (1) |
|
4.12.2 DFF-Based 180-nm CMOS |
|
|
200 | (1) |
|
4.12.3 JK Flip-Flop-Based 45-nm CMOS |
|
|
200 | (3) |
|
4.13 Design and Characterization of a 180-nm CMOS PLL |
|
|
203 | (1) |
|
4.14 All Digital Phase-Locked Loop |
|
|
204 | (2) |
|
|
204 | (1) |
|
4.14.2 A Simple ADPLL Using an NCO |
|
|
204 | (1) |
|
4.14.3 A High-Resolution ADPLL Using Double DCO |
|
|
205 | (1) |
|
|
206 | (3) |
|
|
206 | (1) |
|
4.15.2 An Analog DLL for Variable Frequency Generation |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
210 | (5) |
5 Electronic Signal Converter Circuits |
|
215 | (48) |
|
|
215 | (1) |
|
5.2 Types of Electronic Signal Converters |
|
|
216 | (2) |
|
5.2.1 Concrete Applications |
|
|
216 | (1) |
|
5.2.2 Signal Converter Types |
|
|
217 | (1) |
|
5.3 Selected ADC Architectures: Brief Overview |
|
|
218 | (7) |
|
|
218 | (1) |
|
5.3.2 Ramp-Compare ADC or Ramp Run-Up ADC |
|
|
219 | (1) |
|
5.3.3 Flash ADC or Direct Conversion ADC |
|
|
219 | (1) |
|
5.3.4 Successive-Approximation ADC |
|
|
220 | (1) |
|
|
220 | (1) |
|
5.3.6 Pipeline ADC or Subranging ADC |
|
|
221 | (1) |
|
5.3.7 Sigma-Delta ADC or Oversampling ADC |
|
|
221 | (1) |
|
5.3.8 Time-Interleaved ADC |
|
|
222 | (1) |
|
|
222 | (1) |
|
5.3.10 Tracking ADC or Counter-Ramp ADC or Delta-Encoded ADC |
|
|
223 | (1) |
|
5.3.11 Architecture Selection |
|
|
224 | (1) |
|
5.4 Selected DAC Architectures: Brief Overview |
|
|
225 | (6) |
|
5.4.1 Binary-Weighted DAC |
|
|
225 | (2) |
|
5.4.2 Thermometer-Coded DAC |
|
|
227 | (1) |
|
5.4.3 Pulse-Width Modulator DAC |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
228 | (1) |
|
5.4.6 Oversampling or Interpolating DAC |
|
|
229 | (1) |
|
|
229 | (1) |
|
5.4.8 Successive-Approximation or Cyclic or Algorithmic DAC |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
230 | (1) |
|
5.5 Characteristics for Data Converters |
|
|
231 | (7) |
|
5.5.1 Characteristics for ADC |
|
|
231 | (5) |
|
5.5.2 Characteristics for DAC |
|
|
236 | (2) |
|
5.6 A 90-nm CMOS-Based Flash ADC |
|
|
238 | (7) |
|
|
238 | (2) |
|
5.6.2 1 of N Code Generator |
|
|
240 | (1) |
|
|
240 | (1) |
|
5.6.4 Physical Design and Characterization of 90-nm ADC |
|
|
241 | (1) |
|
5.6.5 Post-Layout Simulation and Characterization |
|
|
241 | (4) |
|
5.7 A 45-nm CMOS-Based Flash ADC |
|
|
245 | (4) |
|
|
245 | (1) |
|
5.7.2 1 of N Code Generator |
|
|
245 | (1) |
|
|
246 | (1) |
|
5.7.4 Functional Simulation and Characterization |
|
|
246 | (3) |
|
5.8 Single-Electron-Based ADC |
|
|
249 | (1) |
|
5.8.1 Single-Electron Circuitry-Based ADC |
|
|
249 | (1) |
|
5.8.2 Single-Electron Transistor-Based ADC |
|
|
249 | (1) |
|
5.9 Organic Thin-Film Transistor-Based ADCs |
|
|
250 | (2) |
|
5.9.1 Organic Thin-Film Transistor VCO-Based ADC |
|
|
250 | (1) |
|
5.9.2 Complementary Organic Thin-Film Transistor-Based Successive-Approximation ADC |
|
|
250 | (2) |
|
5.10 Sigma-Delta Modulator-Based ADC |
|
|
252 | (4) |
|
|
252 | (1) |
|
5.10.2 Architecture Overview |
|
|
252 | (2) |
|
5.10.3 Architecture Components |
|
|
254 | (2) |
|
5.11 Sigma-Delta Modulator-Based Digital-to-Analog Converter |
|
|
256 | (1) |
|
5.12 Single Electron Transistor-Based Digital-to-Analog Converter |
|
|
257 | (1) |
|
|
258 | (1) |
|
|
259 | (4) |
6 Sensor Circuits and Systems |
|
263 | (52) |
|
|
263 | (1) |
|
6.2 Nanoelectronics-Based Biosensors |
|
|
264 | (2) |
|
6.2.1 Spintronic-Memristor-Based Biosensors |
|
|
264 | (1) |
|
6.2.2 Tunnel-FET-Based Biosensors |
|
|
265 | (1) |
|
6.2.3 Graphene-FET-Based Biosensors |
|
|
265 | (1) |
|
6.3 Thermal Sensors for Mixed-Signal Circuits and Systems |
|
|
266 | (6) |
|
6.3.1 Performance Metrics for Thermal Sensors |
|
|
267 | (1) |
|
6.3.2 A Concrete Example: A 45-nm CMOS Ring Oscillator-Based Thermal Sensor |
|
|
268 | (3) |
|
6.3.3 A Concrete Example: Spintronic-Memristor Temperature Sensor |
|
|
271 | (1) |
|
|
272 | (6) |
|
6.4.1 Operation and Performance of Cells |
|
|
273 | (2) |
|
6.4.2 Selected Solar Cell Designs |
|
|
275 | (1) |
|
6.4.3 Solar Cell Models for Circuit Simulations |
|
|
276 | (2) |
|
6.5 Piezoelectric Sensors |
|
|
278 | (2) |
|
|
280 | (14) |
|
6.6.1 Types of Image Sensors |
|
|
281 | (4) |
|
6.6.2 Characteristics of the Image Sensors |
|
|
285 | (4) |
|
6.6.3 A Concrete Example: 32-nm CMOS APS Design |
|
|
289 | (2) |
|
6.6.4 Smart Image Sensors |
|
|
291 | (2) |
|
6.6.5 Secure Image Sensors |
|
|
293 | (1) |
|
6.7 Nanoelectronics-Based Gas Sensors |
|
|
294 | (1) |
|
6.7.1 CNTFET-Based Gas Sensor |
|
|
294 | (1) |
|
6.7.2 CNTFET-Based Chemical Sensor |
|
|
294 | (1) |
|
|
295 | (2) |
|
6.9 Epileptic Seizure Sensors |
|
|
297 | (1) |
|
|
297 | (2) |
|
6.10.1 A Diode-Based Humidity Sensor |
|
|
298 | (1) |
|
6.10.2 A CMOS Device—Based Humidity Sensor |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
300 | (7) |
|
6.12.1 Types of Sense Amplifiers |
|
|
301 | (1) |
|
6.12.2 Performance Metrics for the Sense Amplifiers |
|
|
302 | (2) |
|
6.12.3 A Concrete Example: 45-nm CMOS Clamped Bitline Sense Amplifier |
|
|
304 | (3) |
|
|
307 | (1) |
|
|
308 | (7) |
7 Memory in the AMS-SoCs |
|
315 | (50) |
|
|
315 | (2) |
|
7.2 Static Random-Access Memory |
|
|
317 | (21) |
|
|
317 | (1) |
|
7.2.2 Different Types of SRAM |
|
|
318 | (1) |
|
7.2.3 Traditional Six-Transistor SRAM |
|
|
318 | (3) |
|
7.2.4 Four-Transistor SRAM |
|
|
321 | (1) |
|
7.2.5 Five-Transistor SRAM |
|
|
321 | (1) |
|
7.2.6 Seven-Transistor SRAM |
|
|
322 | (2) |
|
7.2.7 Eight-Transistor SRAM |
|
|
324 | (2) |
|
7.2.8 Nine-Transistor SRAM |
|
|
326 | (1) |
|
7.2.9 Ten-Transistor SRAM |
|
|
326 | (1) |
|
7.2.10 Performance Metrics of SRAM |
|
|
327 | (4) |
|
7.2.11 Characterization of Specific SRAMs |
|
|
331 | (7) |
|
7.3 Dynamic Random-Access Memory |
|
|
338 | (9) |
|
|
339 | (1) |
|
7.3.2 Different Types of DRAM |
|
|
339 | (1) |
|
7.3.3 Selected DRAM Designs Based on Topology |
|
|
340 | (3) |
|
7.3.4 DRAMs Based on Modes of Operation |
|
|
343 | (1) |
|
|
344 | (1) |
|
7.3.6 Video or Graphics DRAM |
|
|
344 | (1) |
|
|
345 | (1) |
|
7.3.8 Characteristics of DRAM |
|
|
346 | (1) |
|
7.4 Twin-Transistor Random-Access Memory |
|
|
347 | (1) |
|
7.5 Thyristor Random-Access Memory |
|
|
348 | (1) |
|
|
349 | (2) |
|
7.6.1 Programmable Read-Only Memory |
|
|
349 | (1) |
|
7.6.2 Erasable Programmable Read-Only Memory |
|
|
349 | (1) |
|
7.6.3 Electrically Erasable Programmable Read-Only Memory |
|
|
350 | (1) |
|
|
351 | (1) |
|
7.8 Resistive Random-Access Memory |
|
|
352 | (3) |
|
7.8.1 Nonvolatile Resistive RAM for Storage |
|
|
352 | (1) |
|
7.8.2 Conductive Metal-Oxide Memory |
|
|
353 | (1) |
|
7.8.3 Memristor-Based Nonvolatile SRAM |
|
|
354 | (1) |
|
7.9 Magnetic or Magnetoresistive Random-Access Memory |
|
|
355 | (1) |
|
|
356 | (2) |
|
|
358 | (1) |
|
|
359 | (6) |
8 Mixed-Signal Circuit and System Design Flow |
|
365 | (56) |
|
|
365 | (1) |
|
8.2 AMS-SoC: A Complete Design Perspective |
|
|
365 | (4) |
|
8.3 Integrated Circuit Design Flow: Top-Down versus Bottom-Up |
|
|
369 | (2) |
|
8.4 Analog Circuit Design Flow |
|
|
371 | (11) |
|
8.4.1 Behavioral Simulation |
|
|
372 | (2) |
|
8.4.2 Transistor-Level Design or Schematic Capture |
|
|
374 | (1) |
|
8.4.3 Transistor-Level Simulation and Characterization |
|
|
374 | (1) |
|
8.4.4 Physical Design or Layout Design |
|
|
374 | (1) |
|
|
375 | (1) |
|
8.4.6 Parasitic (RCLK) Extraction |
|
|
376 | (1) |
|
8.4.7 Layout versus Schematic Verification |
|
|
377 | (1) |
|
8.4.8 Electrical Rule Check |
|
|
377 | (1) |
|
8.4.9 Physical Design Characterization |
|
|
378 | (1) |
|
8.4.10 Variability Analysis |
|
|
379 | (1) |
|
8.4.11 Performance Optimization |
|
|
380 | (2) |
|
8.5 Digital Circuit Design Flow |
|
|
382 | (7) |
|
8.5.1 System-Level Design |
|
|
384 | (1) |
|
8.5.2 Architecture-Level Design |
|
|
384 | (1) |
|
|
385 | (1) |
|
8.5.4 Transistor-Level Design |
|
|
386 | (1) |
|
|
386 | (1) |
|
8.5.6 Physical Verification |
|
|
387 | (1) |
|
|
387 | (1) |
|
8.5.8 Engineering Change Order |
|
|
388 | (1) |
|
8.5.9 Circuit Fabrication, Packaging, and Testing |
|
|
388 | (1) |
|
8.6 Analog and Mixed-Signal Circuit Design Flow |
|
|
389 | (4) |
|
8.6.1 Mixed-Signal Design Flow |
|
|
389 | (2) |
|
8.6.2 Analog and/or Mixed-Signal Circuit Synthesis Techniques |
|
|
391 | (2) |
|
8.7 Design Flow Using Commercial Electronic Design Automation Tools |
|
|
393 | (6) |
|
8.7.1 Selected Commercial EDA Tools |
|
|
393 | (1) |
|
|
394 | (1) |
|
|
395 | (3) |
|
8.7.4 For Mixed-Signal System Design |
|
|
398 | (1) |
|
8.8 Design Flow Using Free or Open-Source EDA Tools |
|
|
399 | (4) |
|
8.8.1 Selected Free or Open-Source EDA Tools |
|
|
399 | (2) |
|
|
401 | (1) |
|
|
402 | (1) |
|
8.8.4 For Mixed-Signal Design |
|
|
402 | (1) |
|
8.9 Comprehensive Design Flows |
|
|
403 | (4) |
|
8.9.1 For Analog/Mixed-Signal Circuits and Systems |
|
|
403 | (3) |
|
8.9.2 For Digital Circuits and Systems |
|
|
406 | (1) |
|
8.10 Process Design Kit and Libraries |
|
|
407 | (2) |
|
8.11 EDA Tool Installation |
|
|
409 | (2) |
|
8.11.1 Client-Server Platform |
|
|
409 | (1) |
|
8.11.2 Workstation-Based Platform |
|
|
410 | (1) |
|
8.11.3 Mixed-Configuration Platform |
|
|
410 | (1) |
|
|
411 | (1) |
|
|
412 | (9) |
9 Mixed-Signal Circuit and System Simulation |
|
421 | (92) |
|
|
421 | (1) |
|
9.2 Simulation Types and Languages for Circuits and Systems |
|
|
422 | (3) |
|
9.2.1 Simulations Based on Abstraction Levels |
|
|
422 | (1) |
|
9.2.2 Simulations Based on Signal Types |
|
|
423 | (1) |
|
9.2.3 Simulations Based on System Models |
|
|
423 | (1) |
|
9.2.4 Simulations Based on Design Tasks |
|
|
423 | (1) |
|
9.2.5 Simulation Languages |
|
|
424 | (1) |
|
9.3 Behavioral Simulation using MATLAB® |
|
|
425 | (8) |
|
9.3.1 System- or Architecture-Level Simulations |
|
|
426 | (4) |
|
9.3.2 Circuit-Level Simulations |
|
|
430 | (2) |
|
9.3.3 Device-Level Simulations |
|
|
432 | (1) |
|
9.4 Simulink®- or Simscape®-Based Simulations |
|
|
433 | (12) |
|
9.4.1 System- or Architecture-Level Simulations |
|
|
434 | (4) |
|
9.4.2 Circuit-Level Simulations |
|
|
438 | (2) |
|
9.4.3 Device-Level Simulations |
|
|
440 | (5) |
|
9.5 Circuit-Level and/or Device-Level Analog Simulations |
|
|
445 | (19) |
|
9.5.1 SPICE Analog Simulation Background |
|
|
446 | (1) |
|
9.5.2 Commercial Accurate Analog Circuit Simulators |
|
|
447 | (1) |
|
9.5.3 Free and/or Open-Source Accurate SPICE |
|
|
448 | (1) |
|
|
449 | (1) |
|
|
450 | (1) |
|
|
450 | (1) |
|
9.5.7 Different Types of Analysis using SPICE |
|
|
450 | (2) |
|
9.5.8 SPICE-Based Simulation Examples |
|
|
452 | (3) |
|
|
455 | (5) |
|
9.5.10 SPICE Simulation Flow |
|
|
460 | (4) |
|
9.6 Verilog-A-Based Analog Simulation |
|
|
464 | (10) |
|
9.6.1 Verilog-A-Based Circuit-Level Simulations |
|
|
465 | (3) |
|
9.6.2 Verilog-A-Based Device-Level Simulations |
|
|
468 | (6) |
|
9.7 Simulations of Digital Circuits or Systems |
|
|
474 | (6) |
|
9.7.1 SystemVerilog-Based Simulation |
|
|
474 | (1) |
|
9.7.2 VHDL-Based Simulation |
|
|
475 | (2) |
|
9.7.3 MyHDL-Based Simulation |
|
|
477 | (1) |
|
9.7.4 SystemC-Based Simulation |
|
|
478 | (2) |
|
9.8 Mixed-Signal HDL-Based Simulation |
|
|
480 | (15) |
|
9.8.1 Verilog-AMS-Based Simulation |
|
|
481 | (8) |
|
9.8.2 VHDL-AMS-Based Simulation |
|
|
489 | (2) |
|
9.8.3 OpenMAST™-Based Simulation |
|
|
491 | (3) |
|
9.8.4 SystemC-AMS-Based Simulation |
|
|
494 | (1) |
|
9.9 Mixed-Mode Circuit-Level Simulations |
|
|
495 | (3) |
|
9.9.1 Nanoelectronics Analog versus Mixed-Signal Simulation: A Comparative Perspective |
|
|
496 | (1) |
|
9.9.2 Mixed-Mode with Individual Analog and Digital Engine |
|
|
497 | (1) |
|
9.9.3 Mixed-Mode with Unified Analog and Digital Engine |
|
|
498 | (1) |
|
9.10 Models for Circuit Simulations |
|
|
498 | (3) |
|
9.10.1 Compact Model Generation Flow |
|
|
498 | (2) |
|
9.10.2 Types of Compact Models |
|
|
500 | (1) |
|
9.10.3 Automatic Device Model Synthesizer (ADMS) |
|
|
501 | (1) |
|
|
501 | (1) |
|
|
502 | (11) |
10 Power-, Parasitic-, and Thermal-Aware AMS-SoC Design Methodologies |
|
513 | (106) |
|
|
513 | (1) |
|
10.2 Power Dissipation: Key Design Constraint |
|
|
513 | (8) |
|
10.2.1 The Effects of High-Power Dissipation |
|
|
514 | (1) |
|
10.2.2 Power Dissipation Sources |
|
|
515 | (1) |
|
10.2.3 Power or Energy Dissipation Metrics |
|
|
516 | (2) |
|
10.2.4 Energy/Power Dissipation: Application Perspectives |
|
|
518 | (2) |
|
10.2.5 Limits to Low-Power Design |
|
|
520 | (1) |
|
10.3 Different Energy or Power Reduction Techniques for AMS-SoC |
|
|
521 | (6) |
|
10.3.1 AMS-SoC Energy or Power Reduction Techniques: An Overview |
|
|
521 | (2) |
|
10.3.2 Analog Circuit Power Optimization: An Overview |
|
|
523 | (2) |
|
10.3.3 Digital SoC Power or Energy Optimization Procedures: An Overview |
|
|
525 | (2) |
|
10.4 Presilicon Power Reduction Techniques |
|
|
527 | (9) |
|
|
527 | (1) |
|
10.4.2 Dual-Threshold-Based Circuit-Level Optimization of a Universal Level Converter |
|
|
528 | (3) |
|
10.4.3 Dual-Oxide-Based Logic-Level Optimization of Digital Circuits |
|
|
531 | (3) |
|
10.4.4 Dual-Oxide-Based RTL Optimization of Digital Circuits |
|
|
534 | (2) |
|
10.5 Hardware-Based Postsilicon Power Reduction Techniques |
|
|
536 | (5) |
|
|
536 | (2) |
|
10.5.2 Dynamic or Variable Frequency Clocking for Power Reduction |
|
|
538 | (2) |
|
10.5.3 Adaptive Voltage Scaling for Power and Energy Reduction |
|
|
540 | (1) |
|
10.6 Dynamic Power Reduction Techniques |
|
|
541 | (7) |
|
|
541 | (1) |
|
10.6.2 Dual-Voltage and Dual-Frequency-Based Circuit-Level Technique |
|
|
542 | (2) |
|
10.6.3 Multiple Supply Voltage-Based RTL Technique |
|
|
544 | (4) |
|
10.7 Subthreshold Leakage Reduction Techniques |
|
|
548 | (5) |
|
|
548 | (2) |
|
10.7.2 Dual-Threshold-Based Circuit-Level Optimization of Nano-CMOS SRAM |
|
|
550 | (3) |
|
10.8 Gate-Oxide Leakage Reduction Techniques |
|
|
553 | (7) |
|
|
553 | (1) |
|
10.8.2 Dual-Oxide-Based Circuit-Level Optimization of a Current-Starved VCO |
|
|
554 | (4) |
|
10.8.3 Dual-Oxide-Based RTL Optimization of Digital ICs |
|
|
558 | (2) |
|
10.9 Parasitics: Brief Overview |
|
|
560 | (2) |
|
10.10 The Effects of Parasitics on Integrated Circuits |
|
|
562 | (3) |
|
10.10.1 Parasitics in Real-Life Example Circuits |
|
|
562 | (1) |
|
10.10.2 Effects of the Parasitics |
|
|
562 | (3) |
|
10.11 Modeling and Extraction of Parasitics |
|
|
565 | (9) |
|
10.11.1 Signal Propagation: In a Real Wire |
|
|
565 | (1) |
|
10.11.2 Parasitics Modeling and Simulation: The Key Aspects |
|
|
566 | (1) |
|
10.11.3 Circuit (Device+Parasitic) Extraction Process |
|
|
566 | (2) |
|
10.11.4 Parasitics Extraction Techniques |
|
|
568 | (1) |
|
10.11.5 Parasitics Modeling |
|
|
569 | (1) |
|
10.11.6 Parasitics Model Order Reduction |
|
|
570 | (4) |
|
10.12 Design Flows for Parasitic-Aware Circuit Optimization |
|
|
574 | (8) |
|
10.12.1 Parasitic-Aware Analog Design Flow with Multilevel Optimizations |
|
|
574 | (1) |
|
10.12.2 A Rapid Parasitic-Aware Design Flow for Analog Circuits |
|
|
574 | (2) |
|
10.12.3 Single-Manual Iteration Fast Design Flow for Parasitic-Optimal VCO |
|
|
576 | (2) |
|
10.12.4 Parasitic-Aware Low-Power Design of the ULC |
|
|
578 | (4) |
|
10.13 Temperature or Thermal Issue: An Overview |
|
|
582 | (2) |
|
|
584 | (4) |
|
10.14.1 Heat Dissipation: Structure View |
|
|
584 | (2) |
|
10.14.2 Compact Thermal Modeling |
|
|
586 | (2) |
|
10.15 Thermal Analysis or Simulation Techniques |
|
|
588 | (6) |
|
10.15.1 Heat Transfer Basics |
|
|
588 | (1) |
|
10.15.2 Thermal Analysis Basics |
|
|
589 | (1) |
|
10.15.3 Thermal Analysis Types |
|
|
589 | (1) |
|
10.15.4 A Runge-Kutta-Based Method |
|
|
590 | (1) |
|
10.15.5 An Integrated Space-and-Time-Adaptive Chip Thermal Analysis Framework |
|
|
590 | (2) |
|
10.15.6 A Fast Asynchronous Time Marching Technique |
|
|
592 | (1) |
|
10.15.7 Green Function-Based Method |
|
|
592 | (2) |
|
10.15.8 Thermal Moment Matching Method |
|
|
594 | (1) |
|
10.16 Temperature Monitoring or Sensing |
|
|
594 | (1) |
|
10.16.1 Hardware-Based Thermal Monitoring |
|
|
594 | (1) |
|
10.16.2 Software-Based Temperature Monitoring |
|
|
594 | (1) |
|
10.16.3 Hybrid Hardware- and Software-Based Thermal Monitoring |
|
|
594 | (1) |
|
10.17 Temperature Control or Management |
|
|
595 | (1) |
|
|
595 | (1) |
|
|
596 | (1) |
|
10.18 Thermal-Aware Circuit Optimization |
|
|
596 | (6) |
|
10.18.1 A Thermal-Aware SRAM Optimization |
|
|
596 | (3) |
|
10.18.2 A Thermal-Aware VCO Optimization |
|
|
599 | (3) |
|
10.19 Thermal-Aware Digital Design Flows |
|
|
602 | (2) |
|
10.19.1 Thermal-Aware Digital Synthesis |
|
|
602 | (1) |
|
10.19.2 Thermal-Aware Physical Design |
|
|
603 | (1) |
|
10.20 Thermal-Aware Register-Transfer-Level Optimization |
|
|
604 | (1) |
|
10.21 Thermal-Aware System-Level Design |
|
|
605 | (1) |
|
|
606 | (1) |
|
|
607 | (12) |
11 Variability-Aware AMS-SoC Design Methodologies |
|
619 | (70) |
|
|
619 | (2) |
|
11.2 Methods for Variability Analysis |
|
|
621 | (22) |
|
11.2.1 Monte Carlo Method |
|
|
622 | (6) |
|
11.2.2 Design of Experiments Method |
|
|
628 | (5) |
|
11.2.3 Corner-Based Method |
|
|
633 | (5) |
|
11.2.4 Fast Monte Carlo Methods |
|
|
638 | (5) |
|
11.3 Tool Setup for Statistical Analysis |
|
|
643 | (1) |
|
11.4 Methods for Variability-Aware Design Optimization |
|
|
644 | (4) |
|
|
644 | (1) |
|
11.4.2 Variability-Aware Schematic Design Optimization Flow |
|
|
645 | (1) |
|
11.4.3 Single Manual Layout Iteration Automatic Flow for Variability-Aware Optimization |
|
|
646 | (2) |
|
11.5 Variability-Aware Design of Active Pixel Sensor |
|
|
648 | (6) |
|
11.5.1 Impact of Variability on APS Performance Metrics |
|
|
648 | (1) |
|
11.5.2 Variability-Aware APS Optimization |
|
|
649 | (5) |
|
11.6 Variability-Aware Design of Nanoscale VCO Circuits |
|
|
654 | (8) |
|
11.6.1 A Conjugate-Gradient-Based Optimization of a 90-nm CMOS Current-Starved VCO |
|
|
654 | (3) |
|
11.6.2 A Particle Swarm Optimization Approach for a 90-nm Current-Starved VCO |
|
|
657 | (4) |
|
11.6.3 Process Variation Tolerant LC-VCO Design |
|
|
661 | (1) |
|
11.7 Variability-Aware Design of the SRAM |
|
|
662 | (5) |
|
11.8 Register-Transfer-Level Methods for Variability-Aware Digital Circuits |
|
|
667 | (10) |
|
|
667 | (1) |
|
11.8.2 A Simulated-Annealing-Based Statistical Approach for RTL Optimization |
|
|
668 | (1) |
|
11.8.3 A Taylor-Series Expansions Diagram-Based Approach for RTL Optimization |
|
|
669 | (4) |
|
11.8.4 Variability-Aware RTL Timing Optimization |
|
|
673 | (2) |
|
11.8.5 RTL Postsilicon Techniques for Variability Tolerance |
|
|
675 | (2) |
|
11.9 System-Level Methods for Variability-Aware Digital Design |
|
|
677 | (1) |
|
11.10 An Adaptive Body Bias Method for Dynamic Process Variation Compensation |
|
|
678 | (1) |
|
11.11 Parametric Variation Effect Mitigation in Clock Networks |
|
|
679 | (2) |
|
11.12 Statistical Methods for Yield Analysis |
|
|
681 | (2) |
|
|
683 | (2) |
|
|
685 | (4) |
12 Metamodel-Based Fast AMS-SoC Design Methodologies |
|
689 | (76) |
|
|
689 | (1) |
|
12.2 Metamodel: An Overview |
|
|
689 | (8) |
|
|
689 | (2) |
|
|
691 | (2) |
|
|
693 | (3) |
|
12.2.4 Metamodel versus Macromodel |
|
|
696 | (1) |
|
12.3 Metamodel-Based Ultrafast Design Flow |
|
|
697 | (1) |
|
12.4 Polynomial-Based Metamodeling |
|
|
698 | (16) |
|
|
698 | (1) |
|
|
699 | (2) |
|
|
701 | (1) |
|
|
702 | (1) |
|
12.4.5 Verilog-AMS Integrated with Polynomial Metamodel for an OP-AMP |
|
|
702 | (5) |
|
12.4.6 Verilog-AMS Integrated with Polynomial Metamodel for a Memristor Oscillator |
|
|
707 | (4) |
|
12.4.7 Verilog-AMS Integrated with Parasitic-Aware Metamodel |
|
|
711 | (3) |
|
12.5 Kriging-Based Metamodeling |
|
|
714 | (8) |
|
|
715 | (2) |
|
|
717 | (1) |
|
12.5.3 Simple Kriging Metamodeling of a Clamped Bitline Sense Amplifier |
|
|
718 | (2) |
|
12.5.4 Ordinary Kriging Metamodeling of a Sense Amplifier |
|
|
720 | (1) |
|
12.5.5 Universal Kriging Metamodeling of a Phase-Locked Loop |
|
|
720 | (2) |
|
12.6 Neural Network-Based Metamodeling |
|
|
722 | (11) |
|
|
722 | (3) |
|
|
725 | (1) |
|
12.6.3 Neural Network Metamodel of PLL Components |
|
|
726 | (1) |
|
12.6.4 Intelligent Verilog-AMS |
|
|
727 | (4) |
|
12.6.5 Kriging Bootstrapped Training for Neural Network Metamodeling |
|
|
731 | (2) |
|
12.7 Ultrafast Process Variations Analysis Using Metamodels |
|
|
733 | (4) |
|
12.7.1 Kriging-Metamodel-Based Process Variation Analysis of a PLL |
|
|
733 | (1) |
|
12.7.2 Neural Network Metamodel-Based Process Variation Analysis of a PLL |
|
|
733 | (3) |
|
12.7.3 Kriging-Trained Neural Network-Based Process Variation Analysis of a PLL |
|
|
736 | (1) |
|
12.8 Polynomial-Metamodel-Based Ultrafast Design Optimization |
|
|
737 | (10) |
|
12.8.1 Polynomial-Metamodel-Based Optimization of a Ring Oscillator |
|
|
737 | (2) |
|
12.8.2 Polynomial-Metamodel-Based Optimization of a PLL |
|
|
739 | (5) |
|
12.8.3 Polynomial-Metamodel-Based Optimization of an OP-AMP |
|
|
744 | (3) |
|
12.9 Neural Network Metamodel-Based Ultrafast Design Optimization |
|
|
747 | (5) |
|
12.9.1 Neural Network Metamodel-Based Optimization of an OP-AMP |
|
|
747 | (3) |
|
12.9.2 Neural Network Metamodel-Based Variability-Aware Optimization of a PLL |
|
|
750 | (2) |
|
12.10 Kriging Metamodel-Based Ultrafast Design Optimization |
|
|
752 | (6) |
|
12.10.1 Simple Kriging Metamodel-Based Optimization of a Thermal Sensor |
|
|
752 | (3) |
|
12.10.2 Ordinary Kriging Metamodel-Based Optimization of a Sense Amplifier |
|
|
755 | (3) |
|
|
758 | (2) |
|
|
760 | (5) |
Index |
|
765 | |