Muutke küpsiste eelistusi

E-raamat: Nonlinear Estimation and Classification

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Statistics 171
  • Ilmumisaeg: 11-Nov-2013
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387215792
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Statistics 171
  • Ilmumisaeg: 11-Nov-2013
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387215792

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Researchers in many disciplines face the formidable task of analyzing massive amounts of high-dimensional and highly-structured data. This is due in part to recent advances in data collection and computing technologies. As a result, fundamental statistical research is being undertaken in a variety of different fields. Driven by the complexity of these new problems, and fueled by the explosion of available computer power, highly adaptive, non-linear procedures are now essential components of modern "data analysis," a term that we liberally interpret to include speech and pattern recognition, classification, data compression and signal processing. The development of new, flexible methods combines advances from many sources, including approximation theory, numerical analysis, machine learning, signal processing and statistics. The proposed workshop intends to bring together eminent experts from these fields in order to exchange ideas and forge directions for the future.

Muu info

Springer Book Archives
Introduction 1(7)
David D. Denison
Mark H. Hansen
Christopher C. Holmes
Bani Mallick
Bin Yu
I Longer Papers 7(228)
Wavelet Statistical Models and Besov Spaces
9(22)
Hyeokho Choi
Richard G. Baraniuk
Coarse-to-Fine Classification and Scene Labeling
31(18)
Donald Geman
Environmental Monitoring Using a Time Series of Satellite Images and Other Spatial Data Sets
49(14)
Harri Kiiveri
Peter Caccetta
Norm Campbell
Fiona Evans
Suzanne Furby
Jeremy Wallace
Traffic Flow on a Freeway Network
63(20)
Peter Bickel
Chao Chen
Jaimyoung Kwon
John Rice
Pravin Varaiya
Erik van Zwet
Internet Traffic Tends Toward Poisson and Independent as the Load Increases
83(28)
Jin Cao
William S. Cleveland
Dong Lin
Don X. Sun
Regression and Classification with Regularization
111(18)
Sayan Mukherjee
Ryan Rifkin
Tomaso Poggio
Optimal Properties and Adaptive Tuning of Standard and Nonstandard Support Vector Machines
129(20)
Grace Wahba
Yi Lin
Yoonkyung Lee
Hao Zhang
The Boosting Approach to Machine Learning: An Overview
149(24)
Robert E. Schapire
Improved Class Probability Estimates from Decision Tree Models
173(16)
Dragos D. Margineantu
Thomas G. Dietterich
Gauss Mixture Quantization: Clustering Gauss Mixtures
189(24)
Robert M. Gray
Extended Linear Modeling with Splines
213(22)
Jianhua Z. Huang
Charles J. Stone
II Shorter Papers 235(2)
Adaptive Sparse Regression
237(12)
Mario A. T. Figueiredo
Multiscale Statistical Models
249(12)
Eric D. Kolaczyk
Robert D. Nowak
Wavelet Thresholding on Non-Equispaced Data
261(12)
Maarten Jansen
Multi-Resolution Properties of Semi-Parametric Volatility Models
273(12)
Enrico Capobianco
Confidence Intervals for Logspline Density Estimation
285(12)
Charles Kooperberg
Charles J. Stone
Mixed-Effects Multivariate Adaptive Splines Models
297(10)
Heping Zhang
Statistical Inference for Simultaneous Clustering of Gene Expression Data
307(26)
Katherine S. Pollard
Mark J. van der Laan
Statistical Inference for Clustering Microarrays
323(10)
Jorg Rahnenfuhrer
Logic Regression - Methods and Software
333(12)
Ingo Ruczinski
Charles Kooperberg
Michael LeBlanc
Adaptive Kernels for Support Vector Classification
345(12)
Robert Burbidge
Generalization Error Bounds for Aggregate Classifiers
357(12)
Gilles Blanchard
Risk Bounds for CART Regression Trees
369(12)
Servane Gey
Elodie Nedelec
On Adaptive Estimation by Neural Net Type Estimators
381(12)
Sebastian Dohler
Ludger Ruschendorf
Nonlinear Function Learning and Classification Using RBF Networks with Optimal Kernels
393(12)
Adam Krzyzak
Instability in Nonlinear Estimation and Classification: Examples of a General Pattern
405(12)
Steven P. Ellis
Model Complexity and Model Priors
417(12)
Angelika van der Linde
A Strategy for Compression and Analysis of Very Large Remote Sensing Data Sets
429(14)
Amy Braverman
Targeted Clustering of Nonlinearly Transformed Gaussians
443(10)
Juan K. Lin
Unsupervised Learning of Curved Manifolds
453(14)
Vin de Silva
Joshua B. Tenenbaum
Anova DDP Models: A Review
467
Maria De Iorio
Peter Muller
Gary L. Rosner
Steven N. MacEachern