Muutke küpsiste eelistusi

Nonparametric Bayesian Inference in Biostatistics 1st ed. 2015 [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 448 pages, kõrgus x laius: 235x155 mm, kaal: 9066 g, 47 Illustrations, color; 49 Illustrations, black and white; XVII, 448 p. 96 illus., 47 illus. in color., 1 Hardback
  • Sari: Frontiers in Probability and the Statistical Sciences
  • Ilmumisaeg: 07-Aug-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319195174
  • ISBN-13: 9783319195179
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 448 pages, kõrgus x laius: 235x155 mm, kaal: 9066 g, 47 Illustrations, color; 49 Illustrations, black and white; XVII, 448 p. 96 illus., 47 illus. in color., 1 Hardback
  • Sari: Frontiers in Probability and the Statistical Sciences
  • Ilmumisaeg: 07-Aug-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319195174
  • ISBN-13: 9783319195179
As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.

Part I Introduction
1 Bayesian Nonparametric Models
3(12)
Peter Muller
Riten Mitra
2 Bayesian Nonparametric Biostatistics
15(42)
Wesley O. Johnson
Miguel de Carvalho
Part II Genomics and Proteomics
3 Bayesian Shape Clustering
57(20)
Zhengwu Zhang
Debdeep Pati
Anuj Srivastava
4 Estimating Latent Cell Subpopulations with Bayesian Feature Allocation Models
77(20)
Yuan Ji
Subhajit Sengupta
Juhee Lee
Peter Muller
Kamalakar Gulukota
5 Species Sampling Priors for Modeling Dependence: An Application to the Detection of Chromosomal Aberrations
97(18)
Federico Bassetti
Fabrizio Leisen
Edoardo Airoldi
Michele Guindani
6 Modeling the Association Between Clusters of SNPs and Disease Responses
115(20)
Raffaele Argiento
Alessandra Guglielmi
Chuhsing Kate Hsiao
Fabrizio Ruggeri
Charlotte Wang
7 Bayesian Inference on Population Structure: From Parametric to Nonparametric Modeling
135(18)
Maria De Iorio
Stefano Favaro
Yee Whye Teh
8 Bayesian Approaches for Large Biological Networks
153(22)
Yang Ni
Giovanni M. Marchetti
Veerabhadran Baladandayuthapani
Francesco C. Stingo
9 Nonparametric Variable Selection, Clustering and Prediction for Large Biological Datasets
175(20)
Subharup Guha
Sayantan Banerjee
Chiyu Gu
Veerabhadran Baladandayuthapani
Part III Survival Analysis
10 Markov Processes in Survival Analysis
195(20)
Luis E. Nieto-Barajas
11 Bayesian Spatial Survival Models
215(32)
Haiming Zhou
Timothy Hanson
12 Fully Nonparametric Regression Modelling of Misclassified Censored Time-to-Event Data
247(24)
Alejandro Jara
Maria Jose Garcia-Zattera
Arnost Komarek
Part IV Random Functions and Response Surfaces
13 Neuronal Spike Train Analysis Using Gaussian Process Models
271(16)
Babak Shahbaba
Sam Behseta
Alexander Vandenberg-Rodes
14 Bayesian Analysis of Curves Shape Variation Through Registration and Regression
287(24)
Donatello Telesca
15 Biomarker-Driven Adaptive Design
311(16)
Yanxun Xu
Yuan Ji
Peter Muller
16 Bayesian Nonparametric Approaches for ROC Curve Inference
327(20)
Vanda Inacio de Carvalho
Alejandro Jara
Miguel de Carvalho
Part V Spatial Data
17 Spatial Bayesian Nonparametric Methods
347(12)
Brian James Reich
Montserrat Fuentes
18 Spatial Species Sampling and Product Partition Models
359(18)
Seongil Jo
Jaeyong Lee
Garritt Page
Fernando Quintana
Lorenzo Trippa
Peter Muller
19 Spatial Boundary Detection for Areal Counts
377(26)
Timothy Hanson
Sudipto Banerjee
Pei Li
Alexander McBean
Part VI Causal Inference and Missing Data
20 A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs
403(20)
George Karabatsos
Stephen G. Walker
21 Bayesian Nonparametrics for Missing Data in Longitudinal Clinical Trials
423(24)
Michael J. Daniels
Antonio R. Linero
Index 447
Riten Mitra is Assistant Professor in the Department of Bioinformatics and Biostatistics at University of Louisville. His research interests include Bayesian graphical models and nonparametric Bayesian methods with a special emphasis on applications in genomics and bioinformatics. 

Peter Mueller is Professor in the Department of Mathematics and the Department of Statistics & Data Science at the University of Texas at Austin. He has published widely on nonparametric Bayesian statistics, with an emphasis on applications in biostatistics and bioinformatics.