Muutke küpsiste eelistusi

Nonstandard Methods in Fixed Point Theory Softcover reprint of the original 1st ed. 1990 [Pehme köide]

  • Formaat: Paperback / softback, 139 pages, kõrgus x laius: 235x155 mm, kaal: 245 g, IX, 139 p., 1 Paperback / softback
  • Sari: Universitext
  • Ilmumisaeg: 06-Aug-1990
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387973648
  • ISBN-13: 9780387973647
Teised raamatud teemal:
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 139 pages, kõrgus x laius: 235x155 mm, kaal: 245 g, IX, 139 p., 1 Paperback / softback
  • Sari: Universitext
  • Ilmumisaeg: 06-Aug-1990
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387973648
  • ISBN-13: 9780387973647
Teised raamatud teemal:
A unified account of the major new developments inspired by Maurey's application of Banach space ultraproducts to the fixed point theory for nonexpansive mappings. Annotation copyright Book News, Inc. Portland, Or.

A unified account of the major new developments inspired by Maurey's application of Banach space ultraproducts to the fixed point theory for non-expansive mappings is given in this text. The first third of the book is devoted to laying a careful foundation for the actual fixed point theoretic results which follow. Set theoretic and Banach space ultraproducts constructions are studied in detail in the second part of the book, while the remainder of the book gives an introduction to the classical fixed point theory in addition to a discussion of normal structure. This is the first book which studies classical fixed point theory for non-expansive maps in the view of non-standard methods.

Muu info

Springer Book Archives
0.- Schauder Bases.- 1.- I. Filters.- II. Limits over Filters.-
III.Nets.- 2.- I. The Set-Theoretic Ultraproduct.- II. The Banach Space
Ultraproduct.- III. Finite Representability.- IV. Super-(M)-Properties and
Banach-Saks Properties.- V. The Ultraproduct of Mappings.- VI. Tzirelson and
James Banach Spaces.- 3.- I. An Introduction to Fixed Point Theory.- II.
Basic Definitions and Results.- III. Basic Results in Ultraproduct Language.-
IV. Some Fixed Point Theorems.- V. Maureys Theorems.- VI. An Application of
Ultranets.