Muutke küpsiste eelistusi

E-raamat: Nuclear Superfluidity: Pairing in Finite Systems

(University of Oxford), (Università degli Studi di Milano)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 60,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An advanced text devoted exclusively to pair correlations in nuclei.

Nuclear Superfluidity is the first modern text devoted exclusively to pair correlations in nuclei. It begins by exploring pair correlations in a variety of systems including superconductivity in metals at low temperatures and superfluidity in liquid 3He and in neutron stars. The book goes on to introduce basic theoretical methods, symmetry breaking and symmetry restoration in finite many-body systems. The last four chapters are devoted to introducing new results on the role of induced interactions in the structure of both normal and exotic nuclei. The most important of these is the renormalization of the pairing interaction due to the coupling of pairs of nucleons to low energy nuclear collective excitations. This book will be essential reading for researchers and students in both experimental and theoretical nuclear physics, and related research fields such as metal clusters, fullerenes and quantum dots.

Muu info

An advanced text devoted exclusively to pair correlations in nuclei.
Preface xi
Introduction
1(32)
Pairing in nuclei, superconductors, liquid 3He and neutrons stars
1(2)
Macroscopic wavefunction and phase rigidity
3(3)
Broken symmetry and collective modes
6(2)
Superfluid 4He (He II)
8(5)
Critical velocity for superconductors
13(1)
Pairing in nuclei
14(5)
Superconductivity
19(6)
Superfluidity of liquid 3He
25(1)
Comparison of pairing in nuclei with superconductivity
26(4)
Neutron stars
30(3)
The pairing force and seniority
33(19)
Evidence for pairing correlations
33(3)
The pairing interaction
36(3)
The δ-function nucleon--nucleon potential
39(3)
The degenerate model and quasi-spin
42(2)
Pairing binding energy formula
44(1)
Quasi-spin wavefunctions
45(2)
Pairing rotations
47(1)
Exact solution of the pairing Hamiltonian
48(4)
The BCS theory
52(20)
The BCS wavefunction
52(3)
The energy
55(2)
Excited states and quasiparticles
57(3)
The mean-field Hamiltonian
60(1)
The correlation energy
61(3)
Pairing correlations in the wavefunction
64(1)
The degenerate model in the BCS approximation
65(1)
Gauge invariance
66(1)
Matrix elements of one-body operators
67(2)
Pairing and isospin
69(3)
Spontaneous symmetry breaking
72(20)
General background
72(3)
Pairing in atomic nuclei (0D systems; ξ>>R)
75(13)
Infinite 3D neutral superconductors (ξ>>L)
88(4)
Pairing vibrations
92(25)
The two-level model
92(10)
Applications
102(6)
Multipole pairing vibrations
108(9)
Phase transitions
117(37)
The experimental situation
119(3)
Static pairing correlations: the BCS theory of pairing phase transitions in strongly rotating nuclei
122(16)
Pairing fluctuations
138(3)
Moments of inertia
141(3)
Condensation-induced tunnelling
144(1)
Response function technique to calculate RPA fluctuations
145(9)
Plastic behaviour of nuclei and other finite systems
154(16)
Exotic decay
155(8)
A variety of applications
163(2)
Low-lying surface vibrations
165(3)
Fission in metal clusters
168(2)
Sources of pairing in nuclei
170(34)
The bare nucleon--nucleon potential and the pairing interaction
171(6)
Mean-field theory
177(7)
Random phase approximation
184(15)
Correlation energy contribution to nuclear masses
199(5)
Beyond mean field
204(15)
Doorway states
204(7)
Effective mass (ω-mass)
211(4)
The ω-mass and the induced interaction
215(4)
Induced interaction
219(38)
Simple estimates
219(4)
Microscopic calculations
223(8)
Slab model
231(8)
Induced pairing interaction, effective mass and vertex correction processes
239(5)
Superfluidity in the inner crust of neutron stars
244(13)
Pairing in exotic nuclei
257(23)
The halo nucleus 11Li
258(17)
The halo nucleus 12Be
275(5)
Appendix A A brief resume of second quantization
280(12)
A.1 Fermions
280(6)
A.2 Particles and holes
286(2)
A.3 Bosons
288(2)
A.4 Quasi-bosons
290(2)
Appendix B Single particle in a non-local potential
292(5)
B.1 Single particle in a non-local, ω-dependent potential
294(3)
Appendix C Useful relations in the treatment of collective modes
297(2)
C.1 Limit on the multipolarity of collective surface vibrations
297(1)
C.2 The relation between F and α
297(2)
Appendix D Particle-vibration coupling
299(6)
D.1 Estimate of <lj||YL||lj>
301(2)
D.2 A simple estimate of <R0 au/ar>
303(2)
Appendix E Model of the single-particle strength function
305(3)
Appendix F Simple model of Pauli principle corrections
308(2)
Appendix G Pairing mean-field solution
310(10)
G.1 Solution of the pairing Hamiltonian
310(5)
G.2 Two-quasiparticle excitations
315(2)
G.3 Minimization
317(1)
G.4 BCS wavefunction
318(2)
Appendix H Pairing in a single j-shell
320(7)
H.1 BCS solution
320(2)
H.2 Cranking moment of inertia
322(1)
H.3 Two-particle transfer
323(1)
H.4 Polarization effects
324(3)
Appendix I Fluctuations and symmetry restoration
327(8)
I.1 Conjugate variables
327(1)
I.2 Rotation about an axis
328(1)
I.3 Rotations in gauge space
329(1)
I.4 Symmetry restoring fluctuations and pairing rotations
330(5)
Appendix J RPA solution of the pairing Hamiltonian
335(14)
J.1 Diagonalization of the H0 + Hp Hamiltonian (odd-solution)
336(3)
J.2 Diagonalization of the H0 + Hp Hamiltonian (even-solution)
339(4)
J.3 Diagonalization of the full Hamiltonian H = H0 + Hp + Hp
343(6)
Appendix K Vortices in nuclei
349(7)
K.1 Simple estimates
349(5)
K.2 Critical velocity for the excitation of rotons
354(1)
K.3 Critical velocity for superfluidity
355(1)
Appendix L Josephson effect
356(5)
References 361(13)
Index 374


David M. Brink obtained his first degree at the University of Tasmania in 1951 and his D.Phil. at Oxford University in 1955. Between 1958 and 1993 he held academic positions in the University of Oxford, including a Fellowship at Balliol College and the Moseley Readership in Theoretical Physics and taught many branches of physics at graduate and undergraduate level. From 1993 to 1998 he was Professor of the History of Physics at the University of Trento in Italy. Professor Brink is a Fellow of the Royal Society and in 1982 was a recipient of the Rutherford Medal of the Institute of Physics. Ricardo A. Broglia earned his Ph.D. at the University of Cuyo, Argentina, in 1965. Following positions at the University of Buenos Aires, the Niels Bohr Institute and the University of Minnesota, he joined the staff of the Niels Bohr Institute in 1970, where he is now adjunct Professor. He has held visiting positions at the State University of New York at Stony Brook, Brookhaven National Laboratory, Los Alamos Scientific Laboratory and Oak Ridge National Laboratory. In 1985 he was called to occupy the chair of Nuclear Structure at the University of Milan.