Muutke küpsiste eelistusi

E-raamat: Packet-Based Control for Networked Control Systems: A Co-Design Approach

  • Formaat: PDF+DRM
  • Ilmumisaeg: 14-Sep-2017
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811062506
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 14-Sep-2017
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811062506

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book introduces a unique, packet-based co-design control framework for networked control systems. It begins by providing a comprehensive survey of state-of-the-art research on networked control systems, giving readers a general overview of the field. It then verifies the proposed control framework both theoretically and experimentally – the former using multiple control methodologies, and the latter using a unique online test rig for networked control systems. The framework investigates in detail the most common, communication constraints, including network-induced delays, data packet dropout, data packet disorders, and network access constraints, as well as multiple controller design and system analysis tools such as model predictive control, linear matrix inequalities and optimal control. This unique and complete co-design framework greatly benefits researchers, graduate students and engineers in the fields of control theory and engineering.

1 A Brief Tutorial of Networked Control Systems
1(14)
1.1 Introduction
1(2)
1.2 Communicational Characteristics of NCSs
3(6)
1.2.1 Network Topology
3(1)
1.2.2 Packet-Based Data Transmission
4(3)
1.2.3 Limited Network Resources
7(2)
1.3 The Research on Networked Control Systems
9(2)
1.3.1 Control-Centred Research on NCSs
9(1)
1.3.2 Co-Design for NCSs
10(1)
1.4 Summary
11(4)
Part I Design
2 Packet-Based Control Design for Networked Control Systems
15(18)
2.1 Problem Statement
15(2)
2.2 Packet-Based Control for NCSs
17(5)
2.2.1 Packet-Based Control for NCSs: A Unified Model
17(1)
2.2.2 Design of the Packet-Based Control for NCSs
18(4)
2.3 Stability of Packet-Based NCSs
22(3)
2.3.1 A Switched System Theory Approach
22(1)
2.3.2 A Delay Dependent Analysis Approach
23(2)
2.4 Controller Design: A GPC-Based Approach
25(2)
2.5 Numerical and Experimental Examples
27(5)
2.6 Summary
32(1)
3 Packet-Based Control for Networked Hammerstein Systems
33(18)
3.1 System Description
33(2)
3.2 Packet-Based Control for Networked Hammerstein Systems
35(5)
3.2.1 Intermediate FCS (FCIS)
35(3)
3.2.2 The Nonlinear Input Process
38(1)
3.2.3 Packet-Based Control for Networked Hammerstein Systems
39(1)
3.3 Stability Analysis of Packet-Based Networked Hammerstein Systems
40(6)
3.3.1 Stability Criterion in Input-Output Description
40(2)
3.3.2 Stability Criterion in State-Space Description
42(4)
3.4 Numerical and Experimental Examples
46(3)
3.5 Summary
49(2)
4 Packet-Based Control for Networked Wiener Systems
51(10)
4.1 System Description
51(1)
4.2 Packet-Based Control for Networked Wiener Systems
52(2)
4.3 Stability Analysis of Packet-Based Networked Wiener Systems
54(3)
4.3.1 Observer Error
54(1)
4.3.2 Closed-Loop Stability
55(2)
4.4 Numerical and Experimental Examples
57(1)
4.5 Summary
58(3)
5 Packet-Based Networked Control Systems in Continuous Time
61(16)
5.1 Packet-Based Control in Continuous Time
61(5)
5.1.1 Packet-Based Control for NCSs in Continuous Time
62(3)
5.1.2 A Novel Model for NCSs
65(1)
5.2 Stability and Stabilization
66(7)
5.3 A Numerical Example
73(1)
5.4 Summary
74(3)
Part II Analysis
6 Stochastic Stabilization of Packet-Based Networked Control Systems
77(10)
6.1 Stochastic Analysis of PBNCSs
77(7)
6.1.1 Stochastic Model of PBNCSs
78(2)
6.1.2 Stochastic Stability and Stabilization
80(4)
6.2 A Numerical Example
84(1)
6.3 Summary
85(2)
7 Stability of Networked Control Systems: A New Time Delay Systems Approach
87(12)
7.1 The Novel Time Delay System Model for PBNCSs
87(2)
7.2 Stability and Stabilization
89(6)
7.3 An Illustrative Example
95(2)
7.4 Summary
97(2)
8 Exploring the Different Delay Effects in Different Channels in Networked Control Systems
99(18)
8.1 Problem Formulation
99(2)
8.2 Categorizing the Control Laws
101(1)
8.2.1 Two General Categories of the Control Laws
101(1)
8.2.2 The Delay-Dependent Control Laws
102(1)
8.3 When and How the Delay Effects in Different Channels Are Different
102(6)
8.3.1 When the Delay Effects Are Different: A Qualitative Analysis
103(1)
8.3.2 How the Delay Effects with (8.4a) and (8.4c) are Different: A Quantitative Analysis
103(5)
8.3.3 A Brief Summary and Discussion
108(1)
8.4 Numerical Examples
108(5)
8.5 Summary
113(4)
Part III Extension
9 Active Compensation for Data Packet Disorder in Networked Control Systems
117(10)
9.1 Data Packet Disorder and Related Work
117(3)
9.1.1 Data Packet Disorder
118(1)
9.1.2 Related Work
119(1)
9.2 Actively Compensating for Data Packet Disorder in NCSs
120(2)
9.3 Modeling and Further Discussion
122(2)
9.3.1 A Unified Model for NCSs
122(1)
9.3.2 Further Discussion: Reduced Communication Constraints
123(1)
9.4 A Numerical Example
124(2)
9.5 Summary
126(1)
10 Error Bounded Sensing for Packet-Based Networked Control Systems
127(16)
10.1 Error Bounded Sensing for PBNCSs
127(5)
10.1.1 Error Bounded Sensing in the Sensor-to-controller Channel
128(2)
10.1.2 Packet-Based Control in the Controller-to-actuator Channel
130(1)
10.1.3 The EBS Strategy for PBNCSs
130(2)
10.2 Stabilization and Further Discussion
132(6)
10.2.1 Stabilization
133(2)
10.2.2 The Effects of the EBS Strategy
135(3)
10.3 Numerical and Experimental Examples
138(4)
10.4 Summary
142(1)
11 Packet-Based Deadband Control for Networked Control Systems
143(18)
11.1 Packet-Based Deadband Control for NCSs
143(3)
11.2 Stability and Stabilization of Packet-Based Deadband Control
146(9)
11.2.1 The Control Laws
146(2)
11.2.2 Stability and Stabilization
148(7)
11.3 Numerical and Experimental Examples
155(5)
11.4 Summary
160(1)
12 Packet-Based Control and Scheduling Co-Design for Networked Control Systems
161(14)
12.1 Problem Statement
161(1)
12.2 Packet-Based Control for Subsystems
162(2)
12.3 Scheduling
164(7)
12.3.1 Static Scheduling
164(3)
12.3.2 Dynamic Feedback Scheduling
167(4)
12.4 Numerical Examples
171(3)
12.5 Summary
174(1)
References 175(8)
Index 183