Preface |
|
xv | |
Acknowledgments |
|
xvii | |
A Primer on Machine Learning Applications in Civil Engineering |
|
xix | |
Author |
|
xxi | |
|
|
1 | (14) |
|
|
1 | (2) |
|
|
3 | (1) |
|
1.3 Research in Machine Learning: Recent Progress |
|
|
4 | (1) |
|
1.4 Artificial Neural Networks |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.7 Support Vector Machine (SVM) |
|
|
7 | (1) |
|
|
8 | (7) |
|
|
8 | (7) |
|
2 Artificial Neural Networks |
|
|
15 | (28) |
|
2.1 Introduction to Fundamental Concepts and Terminologies |
|
|
15 | (1) |
|
2.2 Evolution of Neural Networks |
|
|
16 | (1) |
|
|
16 | (1) |
|
2.4 McCulloch-Pitts Model |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
18 | (1) |
|
2.7 Supervised Learning Network |
|
|
18 | (4) |
|
|
19 | (1) |
|
2.7.2 Adaptive Linear Neuron |
|
|
19 | (1) |
|
2.7.3 Back-Propagation Network |
|
|
20 | (1) |
|
2.7.4 Radial Basis Function Network |
|
|
20 | (1) |
|
2.7.5 Generalized Regression Neural Networks |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.8 Unsupervised Learning Networks |
|
|
22 | (2) |
|
|
22 | (1) |
|
2.8.2 Kohonen Self-Organizing Feature Maps |
|
|
23 | (1) |
|
2.8.3 Counter Propagation Network |
|
|
23 | (1) |
|
2.8.4 Adaptive Resonance Theory Network |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
24 | (4) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
2.9.4 Probabilistic Neural Network |
|
|
25 | (1) |
|
2.9.5 Cascade Correlation Neural Network |
|
|
26 | (1) |
|
|
26 | (1) |
|
2.9.7 Cellular Neural Network |
|
|
27 | (1) |
|
2.9.8 Optical Neural Network |
|
|
27 | (1) |
|
|
28 | (1) |
|
2.10 Working Principle of ANN |
|
|
28 | (15) |
|
|
28 | (3) |
|
2.10.2 Types of Activation Function |
|
|
31 | (1) |
|
|
31 | (2) |
|
|
33 | (1) |
|
2.10.5 Feed-Forward Back Propagation |
|
|
34 | (3) |
|
|
37 | (1) |
|
|
38 | (1) |
|
2.10.8 Working of the Network |
|
|
39 | (2) |
|
|
41 | (1) |
|
|
41 | (2) |
|
|
43 | (38) |
|
3.1 Introduction to Classical Sets and Fuzzy Sets |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
3.2 Classical Relations and Fuzzy Relations |
|
|
44 | (3) |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
3.2.4 Tolerance and Equivalence Relations |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (3) |
|
|
47 | (1) |
|
3.3.2 Features of Membership Function |
|
|
47 | (2) |
|
|
49 | (1) |
|
3.3.4 Membership Value Assignment |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (4) |
|
|
50 | (1) |
|
3.4.2 Lamda Cut for Fuzzy Sets |
|
|
50 | (1) |
|
3.4.3 Defuzzification Methods |
|
|
51 | (3) |
|
|
54 | (1) |
|
3.5 Fuzzy Arithmetic and Fuzzy Measures |
|
|
54 | (4) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
3.5.5 Measure of Fuzziness |
|
|
57 | (1) |
|
|
57 | (1) |
|
3.6 Fuzzy Rule Base and Approximate Reasoning |
|
|
58 | (4) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
58 | (1) |
|
3.6.4 Decomposition of Rules |
|
|
59 | (1) |
|
3.6.5 Aggregation of Fuzzy Rules |
|
|
59 | (1) |
|
|
59 | (1) |
|
3.6.7 Fuzzy Inference System |
|
|
60 | (1) |
|
3.6.7.1 Fuzzy Inference Methods |
|
|
60 | (1) |
|
3.6.8 Fuzzy Expert System |
|
|
61 | (1) |
|
|
62 | (1) |
|
3.7 Fuzzy Decision-Making |
|
|
62 | (4) |
|
|
62 | (1) |
|
3.7.2 Individual and Multi-Person Decision-Making |
|
|
63 | (1) |
|
3.7.3 Multi-Objective Decision-Making |
|
|
63 | (1) |
|
3.7.4 Multi-Attribute Decision-Making |
|
|
64 | (1) |
|
3.7.5 Fuzzy Bayesian Decision-Making |
|
|
64 | (2) |
|
|
66 | (1) |
|
3.8 Fuzzy Logic Control Systems |
|
|
66 | (4) |
|
|
66 | (2) |
|
3.8.2 Control System Design |
|
|
68 | (1) |
|
3.8.3 Operation of the FLC system |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
3.9 Merits and Demerits of Fuzzy Logic |
|
|
70 | (2) |
|
|
70 | (1) |
|
3.9.2 Merits of Fuzzy Logic |
|
|
71 | (1) |
|
3.9.3 Demerits of Fuzzy Logic |
|
|
71 | (1) |
|
3.10 Fuzzy Rule-Based or Inference Systems |
|
|
72 | (9) |
|
|
72 | (1) |
|
3.10.2 Mamdani Fuzzy Inference System |
|
|
72 | (2) |
|
3.10.3 Takagi-Sugeno (TS) Fuzzy Inference System |
|
|
74 | (1) |
|
3.10.4 A Linguistic Variable |
|
|
74 | (1) |
|
3.10.5 Membership Functions |
|
|
75 | (3) |
|
3.10.6 Strategy of Fuzzy Logic Systems |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
79 | (2) |
|
|
81 | (20) |
|
4.1 Introduction to Statistical Learning Theory |
|
|
81 | (1) |
|
4.2 Support Vector Classification |
|
|
82 | (4) |
|
|
82 | (1) |
|
|
83 | (1) |
|
4.2.3 Mapping to High-Dimensional Space |
|
|
83 | (1) |
|
|
83 | (2) |
|
4.2.3.2 Normalizing Kernels |
|
|
85 | (1) |
|
4.2.4 Properties of Mapping Functions Associated with Kernels |
|
|
86 | (1) |
|
|
86 | (1) |
|
|
86 | (3) |
|
|
86 | (1) |
|
|
86 | (1) |
|
4.3.3 Decision Tree-Based SVM |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (3) |
|
|
89 | (1) |
|
|
89 | (1) |
|
4.4.3 Linear Programming SVM |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
4.5.2 Kernel Least Squares |
|
|
92 | (1) |
|
4.5.3 Kernel Principal Component Analysis |
|
|
92 | (1) |
|
4.5.4 Kernel Discriminate Analysis |
|
|
93 | (1) |
|
|
93 | (1) |
|
4.6 Feature Selection and Extraction |
|
|
93 | (3) |
|
|
93 | (1) |
|
4.6.2 Initial Set of Features |
|
|
94 | (1) |
|
4.6.3 Procedure for Feature Selection |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
4.7 Function Approximation |
|
|
96 | (5) |
|
|
96 | (1) |
|
4.7.2 Optimal Hyperplanes |
|
|
96 | (1) |
|
4.7.3 Soft Margin Support Vector Regression |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
98 | (1) |
|
4.7.7 Variable Selections |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
99 | (2) |
|
|
101 | (32) |
|
|
101 | (17) |
|
5.1.1 Basic Operators and Terminologies in GA |
|
|
101 | (8) |
|
5.1.2 Traditional Algorithm and GA |
|
|
109 | (1) |
|
|
110 | (5) |
|
|
115 | (1) |
|
5.1.5 Optimal Allocation of Trails |
|
|
116 | (2) |
|
|
118 | (1) |
|
|
118 | (3) |
|
|
118 | (1) |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
121 | (1) |
|
|
121 | (12) |
|
|
122 | (1) |
|
5.3.2 Characteristics of GP |
|
|
122 | (1) |
|
5.3.2.1 Human-Competitive |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
5.3.2.4 Machine Intelligence |
|
|
123 | (1) |
|
|
124 | (1) |
|
5.3.3.1 Preparatory Steps of Genetic Programming |
|
|
124 | (4) |
|
5.3.3.2 Executional Steps of Genetic Programming |
|
|
128 | (1) |
|
|
129 | (1) |
|
5.3.3.4 Functions and Terminals |
|
|
129 | (1) |
|
5.3.3.5 Crossover Operation |
|
|
129 | (1) |
|
|
130 | (1) |
|
5.3.4 Data Representation |
|
|
130 | (1) |
|
5.3.4.1 Biological Representations |
|
|
130 | (1) |
|
5.3.4.2 Biomimetic Representations |
|
|
131 | (1) |
|
5.3.4.3 Enzyme Genetic Programming Representation |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
133 | (10) |
|
|
133 | (2) |
|
6.1.1 Neural Expert Systems |
|
|
133 | (1) |
|
6.1.2 Approximate Reasoning |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
135 | (2) |
|
6.2.1 Neuro-Fuzzy Systems |
|
|
135 | (1) |
|
6.2.2 Learning the Neuro-Fuzzy System |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
137 | (1) |
|
6.3.1 Neuro-Genetic (NGA) Approach |
|
|
137 | (1) |
|
|
137 | (4) |
|
6.4.1 Genetic Fuzzy Rule-Based Systems |
|
|
139 | (1) |
|
6.4.2 The Keys to the Tuning/Learning Process |
|
|
139 | (1) |
|
6.4.3 Tuning the Membership Functions |
|
|
140 | (1) |
|
6.4.4 Shape of the Membership Functions |
|
|
141 | (1) |
|
6.4.5 The Approximate Genetic Tuning Process |
|
|
141 | (1) |
|
|
141 | (2) |
|
|
141 | (2) |
|
7 Data Statistics and Analytics |
|
|
143 | (12) |
|
|
143 | (1) |
|
7.2 Data Analysis: Spatial and Temporal |
|
|
143 | (4) |
|
7.2.1 Time Series Analysis |
|
|
144 | (1) |
|
|
145 | (1) |
|
7.2.3 Sample Autocorrelation |
|
|
146 | (1) |
|
7.2.4 Rank von Neumann (RVN) Test |
|
|
146 | (1) |
|
7.2.5 Seasonal Mann-Kendall Test |
|
|
146 | (1) |
|
|
147 | (4) |
|
|
148 | (1) |
|
|
149 | (1) |
|
7.3.3 Data Transformation |
|
|
149 | (1) |
|
|
150 | (1) |
|
7.3.5 Data Discretization |
|
|
150 | (1) |
|
|
151 | (1) |
|
7.4.1 Tabular Presentation |
|
|
151 | (1) |
|
7.4.2 Graphical Presentation |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
152 | (3) |
|
|
152 | (3) |
|
8 Applications in the Civil Engineering Domain |
|
|
155 | (90) |
|
|
155 | (1) |
|
8.2 In the Domain of Water Resources |
|
|
155 | (19) |
|
8.2.1 Groundwater Level Forecasting |
|
|
155 | (3) |
|
8.2.2 Water Consumption Modeling |
|
|
158 | (2) |
|
8.2.3 Modeling Failure Trend in Urban Water Distribution |
|
|
160 | (5) |
|
8.2.4 Time Series Flow Forecasting |
|
|
165 | (5) |
|
8.2.5 Classification and Selection of Data |
|
|
170 | (1) |
|
8.2.6 Overview of Research Methodology Adopted |
|
|
170 | (4) |
|
8.3 In the Field of Geotechnical Engineering |
|
|
174 | (2) |
|
8.4 In the Field of Construction Engineering |
|
|
176 | (17) |
|
8.4.1 Using Fuzzy Logic System: Methodology and Procedures |
|
|
182 | (11) |
|
8.5 In the Field of Coastal and Marine Engineering |
|
|
193 | (3) |
|
8.5.1 Need of Forecasting |
|
|
193 | (1) |
|
8.5.2 Results from ANN Model |
|
|
194 | (2) |
|
8.6 In the Field of Environmental Engineering |
|
|
196 | (9) |
|
8.6.1 Dew Point Temperature Modeling |
|
|
196 | (3) |
|
8.6.2 Air Temperature Modeling Using Air Pollution and Meteorological Parameters |
|
|
199 | (1) |
|
8.6.2.1 Performance Analysis of Models for Seven Stations (Meteorological Parameters Only) ANFIS Model |
|
|
200 | (1) |
|
|
200 | (5) |
|
8.7 In the Field of Structural Engineering |
|
|
205 | (1) |
|
8.8 In the Field of Transportation Engineering |
|
|
205 | (3) |
|
8.8.1 Soft Computing for Traffic Congestion Prediction |
|
|
206 | (1) |
|
8.8.2 Neural Networks in Traffic Congestion Prediction |
|
|
206 | (1) |
|
8.8.3 Fuzzy Systems in Traffic Congestion Forecasting |
|
|
207 | (1) |
|
8.8.4 Soft Computing in Vehicle Routing Problems |
|
|
207 | (1) |
|
|
208 | (37) |
|
8.9.1 Soil Hydraulic Conductivity Modeling |
|
|
208 | (5) |
|
8.9.2 Modeling Pan Evaporation |
|
|
213 | (1) |
|
8.9.2.1 Performance Evaluation |
|
|
214 | (14) |
|
8.9.3 Genetic Programming in Sea Wave Height Forecasting |
|
|
228 | (6) |
|
|
234 | (11) |
|
9 Conclusion and Future Scope of Work |
|
|
245 | (4) |
|
|
245 | (4) |
Script Files |
|
249 | (6) |
Index |
|
255 | |