Muutke küpsiste eelistusi

E-raamat: Probes of Multimessenger Astrophysics: Charged cosmic rays, neutrinos, y-rays and gravitational waves

  • Formaat - PDF+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"I have taught from and enjoyed the first edition of the book. The selection of topics is the best I've seen. Maurizio Spurio gives very clear presentations using a generous amount of observational data. "





James Matthews (Louisiana State University)







This is the second edition of an introduction to multi-messenger astrophysics. It covers the many different aspects connecting particle physics with astrophysics and cosmology and introduces high-energy astrophysics using different probes: the electromagnetic radiation, with techniques developed by traditional astronomy; charged cosmic rays, gamma-rays and neutrinos, with methods developed in high-energy laboratories; and gravitational waves, recently observed using laser interferometers.





 





The book offers a comprehensive and systematic approach to the theoretical background and the experimental aspects of the study of the high-energy universe. The breakthrough discovery of gravitational waves motivated this new edition of the book, to offer a more global and multimessenger vision of high-energy astrophysics.  This second edition is updated and enriched with substantial new materials also deriving from the results obtained at the LIGO/Virgo observatories. For the first time it is now possible to draw the connection between gravitational waves, traditional astronomical observations and other probes (in particular, gamma-rays and neutrinos).





 





The book draws on the extensive courses of Professor Maurizio Spurio at the University of Bologna and it is aimed at graduate students and post-graduate researchers with a basic understanding of particle and nuclear physics. It will also be of interest to particle physicists working in accelerator/collider physics who are keen to understand the mechanisms of the largest accelerators in the Universe.

Arvustused

Maurizio Spurios Probes of Multimessenger Astrophysics is, I have just discovered, a very useful book! It is aimed (i) at those undertaking postgraduate courses, (ii) PhD students, (iii) post-doc researchers involved in high-energy physics or astrophysics research, and senior particle physicists eager to understand and appreciate the mechanisms of the largest accelerators in the Universe. (Virginia Trimble, The Observatory, Vol. 139 (1272), October, 2019)

1 An Overview of Multimessenger Astrophysics 1(28)
1.1 Introduction
1(3)
1.2 Astrophysics and Astroparticle Physics
4(2)
1.3 Multimessenger Astronomy
6(3)
1.4 Experimental Results Not Covered in This Book
9(1)
1.5 Cosmic Rays
10(3)
1.6 Gamma-Rays of GeV and TeV Energies
13(2)
1.7 Neutrino Astrophysics
15(3)
1.8 Gravitational Waves
18(1)
1.9 The Dark Universe
19(1)
1.10 Laboratories and Detectors for Astroparticle Physics
20(3)
1.10.1 Space Experiments
21(1)
1.10.2 Experiments in the Atmosphere
22(1)
1.10.3 Ground-Based Experiments
23(1)
1.11 Underground Laboratories for Rare Events
23(3)
References
26(3)
2 Charged Cosmic Rays in Our Galaxy 29(36)
2.1 The Discovery of Cosmic Rays
30(3)
2.2 Cosmic Rays and the Early Days of Particle Physics
33(1)
2.3 The Discovery of the Positron and Particle Identification
34(6)
2.3.1 The Motion in a Magnetic Field and the Particle Rigidity
34(2)
2.3.2 The Identification of the Positron
36(4)
2.4 A Toy Telescope for Primary Cosmic Rays
40(2)
2.5 Differential and Integral Flux
42(2)
2.6 The Energy Spectrum of Primary Cosmic Rays
44(3)
2.7 The Physical Properties of the Galaxy
47(6)
2.7.1 The Galactic Magnetic Field
49(2)
2.7.2 The Interstellar Matter Distribution
51(2)
2.8 Low-Energy Cosmic Rays from the Sun
53(3)
2.9 The Effect of the Geomagnetic Field
56(2)
2.10 Number and Energy Density of Cosmic Rays
58(2)
2.11 Energy Considerations on Cosmic Ray Sources
60(1)
2.12 A Note on Gaussian and SI Units in Electromagnetism
61(3)
References
64(1)
3 Direct Cosmic Ray Detection: Protons, Nuclei, Electrons and Antimatter 65(36)
3.1 Generalities on Direct Measurements
66(2)
3.1.1 Generalities and "Data Mining"
66(1)
3.1.2 Energy and Momentum Measurements
67(1)
3.2 The Calorimetric Technique
68(4)
3.2.1 Hadronic Interaction Length and Mean Free Path
69(1)
3.2.2 The Electromagnetic Radiation Length
70(2)
3.2.3 Hadronic Interaction Length and Mean Free Path in the Atmosphere
72(1)
3.3 Balloon Experiments
72(4)
3.4 Satellite Experiments
76(3)
3.4.1 The IMP Experiments
76(2)
3.4.2 The PAMELA Experiment
78(1)
3.5 The AMS-02 Experiment on the International Space Station
79(4)
3.6 Abundances of Elements in the Solar System and ih CRs
83(2)
3.7 Cosmic Abundances and Origin of the Elements
85(3)
3.8 Energy Spectrum of CR Protons and Nuclei
88(3)
3.9 Antimatter in Our Galaxy
91(1)
3.10 Electrons and Positrons
92(5)
3.10.1 The Positron Component
94(2)
3.10.2 Considerations on the e+, e- Components
96(1)
References
97(4)
4 Indirect Cosmic Ray Detection: Particle Showers in the Atmosphere 101(48)
4.1 Introduction and Historical Information
102(1)
4.2 The Structure of the Atmosphere
103(3)
4.3 The Electromagnetic (EM) Cascade
106(7)
4.3.1 Heitler's Model of EM Showers
107(2)
4.3.2 Analytic Solutions
109(4)
4.4 Showers Initiated by Protons and Nuclei
113(12)
4.4.1 The Muon Component in a Proton-Initiated Cascade
117(1)
4.4.2 The EM Component in a Proton-Initiated Cascade
118(1)
4.4.3 Depth of the Shower Maximum for a Proton Shower
119(2)
4.4.4 Showers Induced by Nuclei: The Superposition Model
121(4)
4.5 The Monte Carlo Simulations of Showers
125(1)
4.6 Detectors of Extensive Air Showers at the Energy of the Knee
126(9)
4.6.1 A Toy Example of an EAS Array
129(2)
4.6.2 Some EAS Experiments
131(3)
4.6.3 Cherenkov Light Produced by EAS Showers
134(1)
4.7 The Time Profile of Cascades
135(2)
4.8 The Arrival Direction of CRs as Measured with EAS Arrays
137(2)
4.9 The CR Flux Measured with EAS Arrays
139(3)
4.10 Mass Composition of CRs Around the Knee
142(3)
4.10.1 The N, Versus NIL Method
143(1)
4.10.2 Depth of the Shower Maximum
144(1)
4.11 Status and Future Experiments
145(2)
References
147(2)
5 Diffusion of Cosmic Rays in the Galaxy 149(34)
5.1 The Overabundance of Li, Be, and B in CRs
151(5)
5.1.1 Why Li, Be, B Are Rare on Earth
151(1)
5.1.2 Production of Li, Be, and B During Propagation
151(5)
5.2 Dating of Cosmic Rays with Radioactive Nuclei
156(3)
5.2.1 Dating "lived" Matter with 14C
156(1)
5.2.2 Unstable Secondarγ-to-Primary Ratios
157(2)
5.3 The Diffusion-Loss Equation
159(5)
5.3.1 The Diffusion Equation with Nuclear Spallation
161(1)
5.3.2 Numerical Estimate of the Diffusion Coefficient D
162(2)
5.4 The Leaky Box Model and Its Evolutions
164(2)
5.5 Energy Dependence of the Escape Time τesc
166(2)
5.6 Energy Spectrum of Cosmic Rays at the Sources
168(1)
5.7 Anisotropies Due to the Diffusion
169(5)
5.7.1 Evidence of Extragalactic CRs Above 8 x 1018 eV
172(2)
5.7.2 The Compton-Getting Effect
174(1)
5.8 The Electron Energy Spectrum at the Sources
174(7)
5.8.1 Synchrotron Radiation
175(4)
5.8.2 Expected Spectral Index of Electrons
179(1)
5.8.3 Average Distance of Accelerators of Electrons
180(1)
References
181(2)
6 Galactic Accelerators and Acceleration Mechanisms 183(42)
6.1 Second- and First-Order Fermi Acceleration Mechanisms
185(9)
6.1.1 Magnetic Mirrors
185(3)
6.1.2 The Second-Order Fermi Acceleration Mechanism
188(2)
6.1.3 The First-Order Fermi Acceleration Mechanism
190(3)
6.1.4 The Power-Law Energy Spectrum from the Fermi Model
193(1)
6.2 Diffusive Shock Acceleration in Strong Shock Waves
194(2)
6.3 Supernova Remnants (SNRs) and the Standard Model of CRs Acceleration
196(4)
6.3.1 SNRs as Galactic CR Accelerators
196(1)
6.3.2 Relevant Quantities in SNR
197(3)
6.4 Maximum Energy Attainable in the Supernova Model
200(2)
6.5 The Spectral Index of the Energy Spectrum
202(6)
6.5.1 The Escape Probability
203(2)
6.5.2 A Shock Front in a Mono-Atomic Gas
205(3)
6.6 Success and Limits of the Standard Model of Cosmic Ray Acceleration
208(2)
6.7 White Dwarfs, Neutron Stars and Pulsars
210(7)
6.7.1 White Dwarfs
211(2)
6.7.2 Neutron Stars
213(2)
6.7.3 Pulsars
215(2)
6.8 Stellar Mass Black Holes
217(2)
6.9 Possible Galactic Sources of Cosmic Rays Above the Knee
219(4)
6.9.1 A Simple Model Involving Pulsars
220(1)
6.9.2 A Simple Model Involving Binary Systems
221(2)
References
223(2)
7 The Extragalactic Sources and Ultra High Energy Cosmic Rays 225(44)
7.1 Hubble's Law and the Cosmic Microwave Background Radiation
226(4)
7.2 The Large-Scale Structure of the Universe
230(2)
7.3 Anisotropy of UHECRs: The Extragalactic Magnetic Fields
232(1)
7.4 The Quest for Extragalactic Sources of UHECRs
233(5)
7.5 Propagation of UHECRs
238(6)
7.5.1 The Adiabatic Energy Loss
239(1)
7.5.2 The Propagation in the CMB: The GZK Cut-Off
239(3)
7.5.3 e± Pair Production by Protons on the CMB
242(1)
7.5.4 Propagation in the Extragalactic Magnetic Fields
243(1)
7.6 Fluorescent Light and Fluorescence Detectors
244(5)
7.7 UHECR Measurements with a Single Technique
249(2)
7.8 Large Hybrid Observatories of UHECRs
251(5)
7.9 Recent Observations of UHECRs
256(5)
7.9.1 The Flux and Arrival Directions of UHECRs
256(2)
7.9.2 The Chemical Composition of UHECRs
258(2)
7.9.3 Correlation of UHECRs with Astrophysical Sources
260(1)
7.10 Measuring EeV Neutrinos with EAS Arrays
261(3)
7.11 Constraints on Top-Down Models
264(1)
7.12 Summary and Discussion of the Results
264(2)
References
266(3)
8 The Sky Seen in γ-Rays 269(44)
8.1 The Spectral Energy Distribution (SED) and Multiwavelength Observations
271(2)
8.2 Astrophysical γ-Rays: The Leptonic Model
273(8)
8.2.1 The Synchrotron Radiation from a Power-Law Spectrum
273(2)
8.2.2 Synchrotron Self-Absorption
275(3)
8.2.3 Inverse Compton Scattering
278(3)
8.3 The Synchrotron Self-Compton (SSC) Mechanism
281(2)
8.4 Astrophysical γ-Rays: The Hadronic Model
283(1)
8.5 Energy Spectrum of γ-Rays from π0 Decay
284(2)
8.6 Galactic Sources and γ-Rays: A Simple Estimate
286(2)
8.7 The Compton Gamma-Ray Observatory (CGRO) Legacy
288(4)
8.7.1 The EGRET γ-Ray Sky
289(3)
8.8 Fermi-LAT and Other Experiments for γ-Ray Astronomy
292(3)
8.8.1 The Fermi-LAT
292(1)
8.8.2 The Fermi-GBM
293(1)
8.8.3 AGILE
294(1)
8.8.4 Swift
294(1)
8.9 Diffuse γ-Rays in the Galactic Plane
295(4)
8.9.1 An Estimate of the Diffuse γ-Ray Flux
297(2)
8.10 The Fermi-LAT Catalogs
299(5)
8.11 Gamma Ray Bursts
304(4)
8.12 Classation of GRBs
308(2)
8.13 Limits of γ-Ray Observations from Space
310(2)
References
312(1)
9 The TeV Sky and Multiwavelength Astrophysics 313(42)
9.1 The Imaging Cherenkov Technique
314(7)
9.1.1 Gamma-Ray Versus Charged CR Discrimination
317(1)
9.1.2 HESS, VERITAS and MAGIC
318(3)
9.2 EAS Arrays for γ-Astronomy
321(2)
9.3 TeV Astronomy: The Catalog
323(2)
9.4 Gamma-Rays from Pulsars
325(2)
9.5 The CRAB Pulsar and Nebula
327(2)
9.6 The Problem of the Identification of Galactic CR Sources
329(2)
9.7 Extended Supernova Remnants
331(1)
9.8 The SED of Some Peculiar SNRs
332(4)
9.9 Summary of the Study of Galactic Accelerators
336(1)
9.10 Active Galaxies
337(3)
9.11 The Extragalactic γ-Ray Sky
340(2)
9.12 The Spectral Energy Distributions of Blazars
342(4)
9.12.1 Quasi-Simultaneous SEDs of Fermi-LAT Blazars
342(3)
9.12.2 Simultaneous SED Campaigns and Mrk 421
345(1)
9.13 Jets in Astrophysics
346(3)
9.13.1 Time Variability in Jets
347(2)
9.14 The Extragalactic Background Light
349(3)
References
352(3)
10 High-Energy Neutrino Astrophysics 355(46)
10.1 The CR, γ-Ray and Neutrino Connection
356(1)
10.2 Neutrino Detection Principle
357(2)
10.3 Background in Large Volume Neutrino Detectors
359(3)
10.4 Neutrino Detectors and Neutrino Telescopes
362(2)
10.5 Reconstruction of Neutrino-Induced Tracks and Showers
364(3)
10.5.1 Muon Neutrino Detection
364(2)
10.5.2 Showering Events
366(1)
10.6 Cosmic Neutrino Flux Estimates
367(6)
10.6.1 A Reference Neutrino Flux from a Galactic Source
367(2)
10.6.2 Extragalactic Diffuse Neutrino Flux
369(1)
10.6.3 Neutrinos from GRBs
370(3)
10.7 Why km3-Scale Telescopes?
373(6)
10.7.1 The Neutrino Effective Area of Real Detectors
376(2)
10.7.2 Number of Optical Sensors in a Neutrino Telescope
378(1)
10.8 Water and Ice Properties
379(1)
10.9 Running and Planned Neutrino Detectors
380(6)
10.9.1 Telescopes in the Antarctic Ice
381(2)
10.9.2 Telescopes in the Mediterranean Sea
383(1)
10.9.3 A Telescope in Lake Baikal
384(1)
10.9.4 Ultra High Energy (UHE) Neutrino Detection
385(1)
10.10 Results from Neutrino Telescopes
386(5)
10.10.1 Point-Like Sources
387(3)
10.10.2 Limits from GRBs and Unresolved Sources
390(1)
10.11 The First Evidences of Cosmic Neutrinos
391(6)
10.11.1 The High-Energy Starting Events (HESE)
391(2)
10.11.2 The Passing Muons
393(1)
10.11.3 Discussion of the Results and Perspectives for Neutrino Astrophysics
394(1)
10.11.4 Cosmogenic Neutrinos
395(2)
10.12 Real-Time Alert and Multimessenger Follow-Up Programs
397(1)
References
398(3)
11 Atmospheric Muons and Neutrinos 401(40)
11.1 Nucleons in the Atmosphere
402(3)
11.2 Secondary Mesons in the Atmosphere
405(4)
11.3 Muons and Neutrinos from Charged Meson Decays
409(4)
11.3.1 The Conventional Atmospheric Neutrino Flux
412(1)
11.3.2 The Prompt Component in the Muon and Neutrino Flux
412(1)
11.4 The Particle Flux at Sea Level
413(3)
11.5 Measurements of Muons at Sea Level
416(2)
11.6 Underground Muons
418(2)
11.6.1 The Depth-Intensity Relation
418(1)
11.6.2 Characteristics of Underground/Underwater Muons
419(1)
11.7 Early Experiments for Atmospheric Neutrinos
420(4)
11.8 Oscillations of Atmospheric Neutrinos
424(1)
11.9 Measurement of Atmospheric νμ Oscillations in Underground Experiments
425(10)
11.9.1 Event Topologies in Super-Kamiokande
426(5)
11.9.2 The Iron Calorimeter Soudan 2 Experiment
431(1)
11.9.3 Upward-Going Muons and MACRO
431(4)
11.10 Atmospheric νμ Oscillations and Accelerator Confirmations
435(2)
11.11 Atmospheric Neutrino Flux at High Energies
437(1)
References
438(3)
12 Low-Energy Neutrino Physics and Astrophysics 441(48)
12.1 Stellar Evolution of Solar Mass Stars
442(4)
12.2 The Standard Solar Model and Neutrinos
446(4)
12.3 Solar Neutrino Detection
450(5)
12.4 The SNO Measurement of the Total Neutrino Flux
455(2)
12.5 Oscillations and Solar Neutrinos
457(2)
12.6 Oscillations Among Three Neutrino Families
459(5)
12.6.1 Three-Flavor Oscillation and KamLAND
462(1)
12.6.2 Measurements of theta13
463(1)
12.7 The Neutrino Flux from the Sun
464(3)
12.7.1 Matter Effect in the Sun
464(1)
12.7.2 The Borexino Experiment at Gran Sasso Lab
465(1)
12.7.3 Summary of Solar Experimental Results
466(1)
12.8 Neutrino Oscillation Parameters
467(1)
12.9 Effects of Neutrino Mixing on Cosmic Neutrinos
468(2)
12.10 Formation of Heavy Elements in Massive Stars
470(1)
12.11 Stellae Novae
471(1)
12.12 Accreting White Dwarf: Type I Supernovae
472(1)
12.13 Core-Collapse Supernovae (Type II)
472(6)
12.13.1 Computer Simulations of Type II Supernovae
473(1)
12.13.2 Description for a Type II Supernovae
474(3)
12.13.3 Supernovae Producing Long GRBs
477(1)
12.14 Neutrino Signal from a Core-Collapse SN
478(4)
12.14.1 Supernova Rate and Location
478(1)
12.14.2 The Neutrino Signal
479(1)
12.14.3 Detection of Supernova Neutrinos
480(2)
12.15 The SN1987A
482(2)
12.16 Stellar Nucleosynthesis and the Origin of Trans-Fe Elements
484(3)
References
487(2)
13 Basics on the Observations of Gravitational Waves 489(48)
13.1 From Einstein Equation to Gravitational Waves
491(6)
13.1.1 A Long Story Short
491(1)
13.1.2 Summary of the Mathematical Background
492(5)
13.2 Energy Carried by a Gravitational Wave
497(2)
13.3 The Two-Body System
499(3)
13.4 Ground-Based Laser Interferometers
502(7)
13.4.1 The Advanced LIGO Interferometers
505(2)
13.4.2 Sensitivity of Ground-based Interferometers
507(2)
13.5 GW150914
509(10)
13.5.1 Inspiral Stage
510(5)
13.5.2 Coalescence Stage: Individual Masses
515(1)
13.5.3 Luminosity Distance and Cosmological Effects
516(2)
13.5.4 Total Emitted Energy
518(1)
13.5.5 Ringdown Stage: Spin of the BHs
518(1)
13.5.6 Source Localization in the Sky
519(1)
13.6 Astrophysics of Stellar Black Holes After GW150914
519(1)
13.7 GW170817, GRB170817A and AT 2017gfo: One Event
520(8)
13.7.1 GW170817
521(6)
13.7.2 GRB170817A
527(1)
13.8 The Kilonova: Electromagnetic Follow-up of AT 2017gfo
528(2)
13.9 Perspectives for Observational Cosmology After GW170817
530(1)
13.10 GW170817: The Axis Jet, the Afterglow and Neutrinos
531(2)
13.11 Bursts of GWs from Stellar Gravitational Collapses
533(2)
References
535(2)
14 Microcosm and Macrocosm 537(36)
14.1 The Standard Model of the Microcosm: The Big Bang
539(3)
14.2 The Standard Model of Particle Physics and Beyond
542(1)
14.3 Gravitational Evidence of Dark Matter
543(2)
14.4 Dark Matter
545(2)
14.5 Supersymmetry (SUSY)
547(4)
14.5.1 Minimal Standard Supersymmetric Model (MSSM)
548(1)
14.5.2 Cosmological Constraints and WIMP
549(2)
14.6 Interactions of WIMPs with Ordinary Matter
551(4)
14.6.1 WIMPs Annihilation
552(1)
14.6.2 WIMPs Elastic Scattering
553(2)
14.7 Direct Detection of Dark Matter: Event Rates
555(3)
14.8 Direct Searches for WIMPs
558(6)
14.8.1 Solid-State Cryogenic Detectors
560(1)
14.8.2 Scintillating Crystals
560(1)
14.8.3 Noble Liquid Detectors
561(2)
14.8.4 Present Experimental Results and the Future
563(1)
14.9 Indirect Searches for WIMPs
564(7)
14.9.1 Neutrinos from WIMP Annihilation in Massive Objects
564(3)
14.9.2 Gamma-Rays from WIMPs
567(2)
14.9.3 The Positron Excess: A WIMP Signature?
569(2)
14.10 What's Next?
571(1)
References
572(1)
15 Conclusions 573(4)
Index 577
Maurizio Spurio is a Professor of Physics at the University of Bologna where he teaches Particle and Astroparticle physics. With his research he is involved in experimental physics, with particular interest in high-energy physics without particle accelerators and astroparticle physics. He was member of the MACRO experiment at Gran Sasso underground laboratory, which provided a deep study of the penetrating component of the cosmic radiation including the observation of atmospheric neutrino oscillations. Since 2001 he is member of the ANTARES experiment (the first neutrino telescope in the sea), currently in charge as deputy spokesperson. Professor Spurio has already co-authored/edited 4 Springer books.