Muutke küpsiste eelistusi

E-raamat: Recommender Systems for Learning

  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Technology enhanced learning (TEL) aims to design, develop and test sociotechnical innovations that will support and enhance learning practices of both individuals and organisations. It is therefore an application domain that generally covers technologies that support all forms of teaching and learning activities. Since information retrieval (in terms of searching for relevant learning resources to support teachers or learners) is a pivotal activity in TEL, the deployment of recommender systems has attracted increased interest. This brief attempts to provide an introduction to recommender systems for TEL settings, as well as to highlight their particularities compared to recommender systems for other application domains.
1 Introduction and Background
1(20)
1.1 Introduction
1(2)
1.2 Recommender Systems
3(3)
1.2.1 Definitions
3(2)
1.2.2 Types
5(1)
1.3 Relevant Systems in Educational Applications
6(15)
1.3.1 Adaptive Educational Hypermedia
6(2)
1.3.2 Learning Networks
8(2)
1.3.3 Educational Data Mining and Learning Analytics
10(1)
1.3.4 Similarities and Differences
11(5)
References
16(5)
2 TEL as a Recommendation Context
21(16)
2.1 TEL Recommendation
21(8)
2.1.1 Defining the TEL Recommendation Problem
21(3)
2.1.2 Identifying the TEL Recommendation Goals
24(4)
2.1.3 Identifying the TEL Context Variables
28(1)
2.2 Data Sets to Support TEL Recommendation
29(8)
2.2.1 Collecting TEL Data Sets
29(1)
2.2.2 Collected Data Sets
30(3)
2.2.3 Usefulness for TEL Recommender Systems
33(1)
References
34(3)
3 Survey and Analysis of TEL Recommender Systems
37(26)
3.1 Framework for Analysis
37(5)
3.2 Survey Results
42(21)
3.2.1 General Overview of Sample
42(10)
3.2.2 Analysis According to Framework
52(4)
3.2.3 Conclusions
56(1)
References
57(6)
4 Challenges and Outlook
63
4.1 Challenges for TEL Recommendation
63(9)
4.1.1 Pedagogy and Cognition
64(2)
4.1.2 Evaluation
66(2)
4.1.3 Data Sets
68(2)
4.1.4 Context
70(1)
4.1.5 Visualisation
70(1)
4.1.6 Virtualisation
71(1)
4.2 Conclusions
72
References
73