Muutke küpsiste eelistusi

Relational Topology 1st ed. 2018 [Pehme köide]

  • Formaat: Paperback / softback, 194 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 68 Illustrations, color; 36 Illustrations, black and white; XIV, 194 p. 104 illus., 68 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Mathematics 2208
  • Ilmumisaeg: 02-Jun-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 331974450X
  • ISBN-13: 9783319744506
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 194 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 68 Illustrations, color; 36 Illustrations, black and white; XIV, 194 p. 104 illus., 68 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Mathematics 2208
  • Ilmumisaeg: 02-Jun-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 331974450X
  • ISBN-13: 9783319744506

This book introduces and develops new algebraic methods to work with relations, often conceived as Boolean matrices, and applies them to topology. Although these objects mirror the matrices that appear throughout mathematics, numerics, statistics, engineering, and elsewhere, the methods used to work with them are much less well known. In addition to their purely topological applications, the volume also details how the techniques may be successfully applied to spatial reasoning and to logics of computer science.

Topologists will find several familiar concepts presented in a concise and algebraically manipulable form which is far more condensed than usual, but visualized via represented relations and thus readily graspable. This approach also offers the possibility of handling topological problems using proof assistants.

1.Introduction.-
2. Prerequisites.-
3. Products of Relations.-
4. Meet and Join as Relations.-
5. Applying Relations in Topology.-
6. Construction of Topologies.-
7. Closures and their Aumann Contacts.-
8. Proximity and Nearness.-
9. Frames.-
10. Simplicial Complexes.