Preface |
|
xiii | |
Introduction |
|
1 | (8) |
|
|
6 | (3) |
|
1 Passive Elements and Circuit Theory |
|
|
9 | (48) |
|
1.1 Immittance Two-Port Network Parameters |
|
|
9 | (4) |
|
1.2 Scattering Parameters |
|
|
13 | (4) |
|
1.3 Interconnections of Two-Port Networks |
|
|
17 | (3) |
|
1.4 Practical Two-Port Networks |
|
|
20 | (4) |
|
1.4.1 Single-Element Networks |
|
|
20 | (1) |
|
1.4.2 π- and T-Type Networks |
|
|
21 | (3) |
|
1.5 Three-Port Network with Common Terminal |
|
|
24 | (2) |
|
|
26 | (5) |
|
|
26 | (3) |
|
|
29 | (2) |
|
|
31 | (4) |
|
1.8 Types of Transmission Lines |
|
|
35 | (9) |
|
|
35 | (1) |
|
|
36 | (3) |
|
|
39 | (2) |
|
|
41 | (1) |
|
|
42 | (2) |
|
|
44 | (9) |
|
|
44 | (2) |
|
|
46 | (7) |
|
|
53 | (1) |
|
|
53 | (4) |
|
2 Active Devices and Modeling |
|
|
57 | (56) |
|
|
57 | (6) |
|
2.1.1 Operation Principle |
|
|
57 | (2) |
|
|
59 | (2) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (7) |
|
|
63 | (2) |
|
|
65 | (5) |
|
|
70 | (13) |
|
2.3.1 Small-Signal Equivalent Circuit |
|
|
70 | (3) |
|
2.3.2 Nonlinear I--V Models |
|
|
73 | (2) |
|
2.3.3 Nonlinear C--V Models |
|
|
75 | (3) |
|
2.3.4 Charge Conservation |
|
|
78 | (1) |
|
2.3.5 Gate--Source Resistance |
|
|
79 | (1) |
|
2.3.6 Temperature Dependence |
|
|
79 | (2) |
|
|
81 | (2) |
|
|
83 | (14) |
|
2.4.1 Small-Signal Equivalent Circuit |
|
|
83 | (2) |
|
2.4.2 Determination of Equivalent Circuit Elements |
|
|
85 | (3) |
|
2.4.3 Curtice Quadratic Nonlinear Model |
|
|
88 | (1) |
|
2.4.4 Parker--Skellern Nonlinear Model |
|
|
89 | (2) |
|
2.4.5 Chalmers (Angelov) Nonlinear Model |
|
|
91 | (2) |
|
2.4.6 IAF (Berroth) Nonlinear Model |
|
|
93 | (1) |
|
|
94 | (3) |
|
|
97 | (10) |
|
2.5.1 Small-Signal Equivalent Circuit |
|
|
97 | (1) |
|
2.5.2 Determination of Equivalent Circuit Elements |
|
|
98 | (2) |
|
2.5.3 Equivalence of Intrinsic π- and T-Type Topologies |
|
|
100 | (2) |
|
2.5.4 Nonlinear Bipolar Device Modeling |
|
|
102 | (3) |
|
|
105 | (2) |
|
|
107 | (6) |
|
|
113 | (42) |
|
|
113 | (3) |
|
|
116 | (4) |
|
3.3 Matching with Lumped Elements |
|
|
120 | (18) |
|
3.3.1 Analytic Design Technique |
|
|
120 | (11) |
|
3.3.2 Bipolar UHF Power Amplifier |
|
|
131 | (4) |
|
3.3.3 MOSFET VHF High-Power Amplifier |
|
|
135 | (3) |
|
3.4 Matching with Transmission Lines |
|
|
138 | (13) |
|
3.4.1 Analytic Design Technique |
|
|
138 | (6) |
|
3.4.2 Equivalence Between Circuits with Lumped and Distributed Parameters |
|
|
144 | (3) |
|
3.4.3 Narrowband Microwave Power Amplifier |
|
|
147 | (2) |
|
3.4.4 Broadband UHF High-Power Amplifier |
|
|
149 | (2) |
|
3.5 Matching Networks with Mixed Lumped and Distributed Elements |
|
|
151 | (2) |
|
|
153 | (2) |
|
4 Power Transformers, Combiners, and Couplers |
|
|
155 | (46) |
|
|
155 | (3) |
|
4.1.1 Three-Port Networks |
|
|
155 | (1) |
|
|
156 | (2) |
|
4.2 Transmission-Line Transformers and Combiners |
|
|
158 | (10) |
|
|
168 | (6) |
|
4.4 Wilkinson Power Dividers/Combiners |
|
|
174 | (8) |
|
|
182 | (10) |
|
4.6 Coupled-Line Directional Couplers |
|
|
192 | (5) |
|
|
197 | (4) |
|
|
201 | (54) |
|
|
201 | (4) |
|
5.2 Filter Design Using Image Parameter Method |
|
|
205 | (5) |
|
5.2.1 Constant-k Filter Sections |
|
|
205 | (2) |
|
5.2.2 m-Derived Filter Sections |
|
|
207 | (3) |
|
5.3 Filter Design Using Insertion Loss Method |
|
|
210 | (12) |
|
5.3.1 Maximally Flat Low-Pass Filter |
|
|
210 | (3) |
|
5.3.2 Equal-Ripple Low-Pass Filter |
|
|
213 | (3) |
|
5.3.3 Elliptic Function Low-Pass Filter |
|
|
216 | (3) |
|
5.3.4 Maximally Flat Group-Delay Low-Pass Filter |
|
|
219 | (3) |
|
5.4 Bandpass and Bandstop Transformation |
|
|
222 | (3) |
|
5.5 Transmission-Line Low-Pass Filter Implementation |
|
|
225 | (3) |
|
5.5.1 Richards's Transformation |
|
|
225 | (1) |
|
|
226 | (2) |
|
|
228 | (1) |
|
|
228 | (15) |
|
5.6.1 Impedance and Admittance Inverters |
|
|
228 | (3) |
|
5.6.2 Coupled-Line Section |
|
|
231 | (3) |
|
5.6.3 Parallel-Coupled Bandpass Filters Using Half-Wavelength Resonators |
|
|
234 | (2) |
|
5.6.4 Interdigital, Combline, and Hairpin Bandpass Filters |
|
|
236 | (3) |
|
5.6.5 Microstrip Filters with Unequal Phase Velocities |
|
|
239 | (2) |
|
5.6.6 Bandpass and Bandstop Filters Using Quarter-Wavelength Resonators |
|
|
241 | (2) |
|
|
243 | (7) |
|
|
250 | (5) |
|
6 Modulation and Modulators |
|
|
255 | (56) |
|
|
255 | (7) |
|
|
255 | (4) |
|
6.1.2 Amplitude Modulators |
|
|
259 | (3) |
|
6.2 Single-Sideband Modulation |
|
|
262 | (5) |
|
6.2.1 Double-Sideband Modulation |
|
|
262 | (3) |
|
6.2.2 Single-Sideband Generation |
|
|
265 | (1) |
|
6.2.3 Single-Sideband Modulator |
|
|
266 | (1) |
|
|
267 | (11) |
|
|
268 | (5) |
|
6.3.2 Frequency Modulators |
|
|
273 | (5) |
|
|
278 | (5) |
|
|
283 | (19) |
|
6.5.1 Amplitude Shift Keying |
|
|
284 | (3) |
|
6.5.2 Frequency Shift Keying |
|
|
287 | (2) |
|
|
289 | (7) |
|
6.5.4 Minimum Shift Keying |
|
|
296 | (3) |
|
6.5.5 Quadrature Amplitude Modulation |
|
|
299 | (1) |
|
6.5.6 Pulse Code Modulation |
|
|
300 | (2) |
|
|
302 | (2) |
|
6.7 Multiple Access Techniques |
|
|
304 | (4) |
|
6.7.1 Time and Frequency Division Multiplexing |
|
|
304 | (1) |
|
6.7.2 Frequency Division Multiple Access |
|
|
305 | (1) |
|
6.7.3 Time Division Multiple Access |
|
|
305 | (1) |
|
6.7.4 Code Division Multiple Access |
|
|
306 | (2) |
|
|
308 | (3) |
|
|
311 | (36) |
|
|
311 | (2) |
|
|
313 | (5) |
|
7.3 Balanced Diode Mixers |
|
|
318 | (8) |
|
7.3.1 Single-Balanced Mixers |
|
|
318 | (3) |
|
7.3.2 Double-Balanced Mixers |
|
|
321 | (5) |
|
|
326 | (3) |
|
|
329 | (2) |
|
7.6 Balanced Transistor Mixers |
|
|
331 | (7) |
|
7.6.1 Single-Balanced Mixers |
|
|
331 | (3) |
|
7.6.2 Double-Balanced Mixers |
|
|
334 | (4) |
|
7.7 Frequency Multipliers |
|
|
338 | (6) |
|
|
344 | (3) |
|
|
347 | (86) |
|
8.1 Oscillator Operation Principles |
|
|
347 | (6) |
|
8.1.1 Steady-State Operation Mode |
|
|
347 | (2) |
|
8.1.2 Start-Up Conditions |
|
|
349 | (4) |
|
8.2 Oscillator Configurations and Historical Aspect |
|
|
353 | (5) |
|
|
358 | (4) |
|
8.4 Parallel Feedback Oscillator |
|
|
362 | (3) |
|
8.5 Series Feedback Oscillator |
|
|
365 | (3) |
|
8.6 Push--Push Oscillators |
|
|
368 | (4) |
|
8.7 Stability of Self-Oscillations |
|
|
372 | (4) |
|
8.8 Optimum Design Techniques |
|
|
376 | (9) |
|
|
376 | (3) |
|
|
379 | (6) |
|
|
385 | (22) |
|
8.9.1 Parallel Feedback Oscillator |
|
|
386 | (6) |
|
8.9.2 Negative Resistance Oscillator |
|
|
392 | (2) |
|
8.9.3 Colpitts Oscillator |
|
|
394 | (3) |
|
8.9.4 Impulse Response Model |
|
|
397 | (10) |
|
8.10 Voltage-Controlled Oscillators |
|
|
407 | (10) |
|
|
417 | (6) |
|
8.12 Dielectric Resonator Oscillators |
|
|
423 | (5) |
|
|
428 | (5) |
|
|
433 | (44) |
|
|
433 | (2) |
|
9.2 Analog Phase-Locked Loops |
|
|
435 | (4) |
|
9.3 Charge-Pump Phase-Locked Loops |
|
|
439 | (2) |
|
9.4 Digital Phase-Locked Loops |
|
|
441 | (3) |
|
|
444 | (17) |
|
|
444 | (5) |
|
|
449 | (5) |
|
|
454 | (3) |
|
9.5.4 Voltage-Controlled Oscillator |
|
|
457 | (4) |
|
|
461 | (5) |
|
|
461 | (1) |
|
|
462 | (1) |
|
|
463 | (2) |
|
|
465 | (1) |
|
9.7 Phase Modulation Using Phase-Locked Loops |
|
|
466 | (3) |
|
9.8 Frequency Synthesizers |
|
|
469 | (5) |
|
9.8.1 Direct Analog Synthesizers |
|
|
469 | (1) |
|
9.8.2 Integer-N Synthesizers Using PLL |
|
|
469 | (2) |
|
9.8.3 Fractional-N Synthesizers Using PLL |
|
|
471 | (2) |
|
9.8.4 Direct Digital Synthesizers |
|
|
473 | (1) |
|
|
474 | (3) |
|
10 Power Amplifier Design Fundamentals |
|
|
477 | (80) |
|
10.1 Power Gain and Stability |
|
|
477 | (10) |
|
10.2 Basic Classes of Operation: A, AB, B, and C |
|
|
487 | (9) |
|
|
496 | (7) |
|
10.4 Nonlinear Effect of Collector Capacitance |
|
|
503 | (3) |
|
|
506 | (9) |
|
10.6 Push-Pull Power Amplifiers |
|
|
515 | (7) |
|
10.7 Broadband Power Amplifiers |
|
|
522 | (15) |
|
10.8 Distributed Power Amplifiers |
|
|
537 | (6) |
|
10.9 Harmonic Tuning Using Load-Pull Techniques |
|
|
543 | (6) |
|
10.10 Thermal Characteristics |
|
|
549 | (3) |
|
|
552 | (5) |
|
11 High-Efficiency Power Amplifiers |
|
|
557 | (100) |
|
|
557 | (10) |
|
11.1.1 Voltage-Switching Configurations |
|
|
557 | (4) |
|
11.1.2 Current-Switching Configurations |
|
|
561 | (3) |
|
11.1.3 Drive and Transition Time |
|
|
564 | (3) |
|
|
567 | (14) |
|
11.2.1 Idealized Class F Mode |
|
|
569 | (3) |
|
11.2.2 Class F with Quarterwave Transmission Line |
|
|
572 | (3) |
|
11.2.3 Effect of Saturation Resistance |
|
|
575 | (2) |
|
11.2.4 Load Networks with Lumped and Distributed Parameters |
|
|
577 | (4) |
|
|
581 | (8) |
|
11.3.1 Idealized Inverse Class F Mode |
|
|
583 | (2) |
|
11.3.2 Inverse Class F with Quarterwave Transmission Line |
|
|
585 | (1) |
|
11.3.3 Load Networks with Lumped and Distributed Parameters |
|
|
586 | (3) |
|
11.4 Class E with Shunt Capacitance |
|
|
589 | (12) |
|
11.4.1 Optimum Load Network Parameters |
|
|
590 | (5) |
|
11.4.2 Saturation Resistance and Switching Time |
|
|
595 | (4) |
|
11.4.3 Load Network with Transmission Lines |
|
|
599 | (2) |
|
11.5 Class E with Finite de-Feed Inductance |
|
|
601 | (14) |
|
11.5.1 General Analysis and Optimum Circuit Parameters |
|
|
601 | (4) |
|
11.5.2 Parallel-Circuit Class E |
|
|
605 | (5) |
|
|
610 | (3) |
|
|
613 | (2) |
|
11.6 Class E with Quarterwave Transmission Line |
|
|
615 | (13) |
|
11.6.1 General Analysis and Optimum Circuit Parameters |
|
|
615 | (7) |
|
11.6.2 Load Network with Zero Series Reactance |
|
|
622 | (3) |
|
11.6.3 Matching Circuits with Lumped and Distributed Parameters |
|
|
625 | (3) |
|
|
628 | (10) |
|
11.8 CAD Design Example: 1.75 GHz HBT Class E MMIC Power Amplifier |
|
|
638 | (15) |
|
|
653 | (4) |
|
12 Linearization and Efficiency Enhancement Techniques |
|
|
657 | (60) |
|
12.1 Feedforward Amplifier Architecture |
|
|
657 | (6) |
|
12.2 Cross Cancellation Technique |
|
|
663 | (2) |
|
12.3 Reflect Forward Linearization Amplifier |
|
|
665 | (1) |
|
12.4 Predistortion Linearization |
|
|
666 | (6) |
|
12.5 Feedback Linearization |
|
|
672 | (6) |
|
12.6 Doherty Power Amplifier Architectures |
|
|
678 | (7) |
|
12.7 Outphasing Power Amplifiers |
|
|
685 | (6) |
|
|
691 | (4) |
|
12.9 Switched Multipath Power Amplifiers |
|
|
695 | (7) |
|
12.10 Kahn EER Technique and Digital Power Amplification |
|
|
702 | (7) |
|
12.10.1 Envelope Elimination and Restoration |
|
|
702 | (2) |
|
12.10.2 Pulse-Width Carrier Modulation |
|
|
704 | (2) |
|
12.10.3 Class S Amplifier |
|
|
706 | (1) |
|
12.10.4 Digital RF Amplification |
|
|
706 | (3) |
|
|
709 | (8) |
|
|
717 | (42) |
|
13.1 Power Detector and VSWR Protection |
|
|
717 | (5) |
|
|
722 | (6) |
|
|
728 | (13) |
|
13.3.1 Diode Phase Shifters |
|
|
729 | (7) |
|
13.3.2 Schiffman 90° Phase Shifter |
|
|
736 | (3) |
|
13.3.3 MESFET Phase Shifters |
|
|
739 | (2) |
|
|
741 | (5) |
|
13.5 Variable Gain Amplifiers |
|
|
746 | (4) |
|
|
750 | (3) |
|
|
753 | (6) |
|
14 Transmitter Architectures |
|
|
759 | (50) |
|
14.1 Amplitude-Modulated Transmitters |
|
|
759 | (7) |
|
14.1.1 Collector Modulation |
|
|
760 | (2) |
|
|
762 | (2) |
|
14.1.3 Low-Level Modulation |
|
|
764 | (1) |
|
|
765 | (1) |
|
14.2 Single-Sideband Transmitters |
|
|
766 | (2) |
|
14.3 Frequency-Modulated Transmitters |
|
|
768 | (4) |
|
14.4 Television Transmitters |
|
|
772 | (4) |
|
14.5 Wireless Communication Transmitters |
|
|
776 | (6) |
|
|
782 | (12) |
|
14.6.1 Phased-Array Radars |
|
|
783 | (3) |
|
|
786 | (5) |
|
14.6.3 Electronic Warfare |
|
|
791 | (3) |
|
14.7 Satellite Transmitters |
|
|
794 | (3) |
|
14.8 Ultra-Wideband Communication Transmitters |
|
|
797 | (5) |
|
|
802 | (7) |
Index |
|
809 | |