Muutke küpsiste eelistusi

E-raamat: Singular Introduction to Commutative Algebra

  • Formaat: PDF+DRM
  • Ilmumisaeg: 06-Dec-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662049631
  • Formaat - PDF+DRM
  • Hind: 88,92 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 06-Dec-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662049631

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book can be understood as a model for teaching commutative algebra, taking into account modern developments such as algorithmic and computational aspects. As soon as a new concept is introduced, it is shown how to handle it by computer. The computations are exemplified with the computer algebra system Singular developed by the authors. Singular is a special system for polynomial computation with many features for global as well as for local commutative algebra and algebraic geometry. The book includes a CD with a version of Singular for various platforms (Unix/Linux, Windows, Macintosh), including all examples and procedures explained in the book. The book can be used for courses, seminars and as a basis for studying research papers in commutative algebra, computer algebra and algebraic geometry.
Preface vii
Rings, Ideals and Standard Bases
1(88)
Rings, Polynomials and Ring Maps
1(8)
Monomial Orderings
9(10)
Ideals and Quotient Rings
19(11)
Local Rings and Localization
30(8)
Rings Associated to Monomial Orderings
38(6)
Normal Forms and Standard Bases
44(9)
The Standard Basis Algorithm
53(14)
Operations on Ideals and Their Computation
67(22)
Ideal Membership
67(2)
Intersection with Subrings
69(2)
Zariski Closure of the Image
71(3)
Solvability of Polynomial Equations
74(1)
Solving Polynomial Equations
74(3)
Radical Membership
77(2)
Intersection of Ideals
79(1)
Quotient of Ideals
79(2)
Saturation
81(3)
Kernel of a Ring Map
84(1)
Algebraic Dependence and Subalgebra Membership
85(4)
Modules
89(102)
Modules, Submodules and Homomorphisms
89(23)
Graded Rings and Modules
112(4)
Standard Bases for Modules
116(10)
Exact Sequences and free Resolutions
126(11)
Computing Resolutions and the Syzygy Theorem
137(14)
Modules over Principal Ideal Domains
151(14)
Tensor Product
165(10)
Operations on Modules and Their Computation
175(16)
Module Membership Problem
175(2)
Intersection with free Submodules
177(1)
Intersection of Submodules
178(1)
Quotients of Submodules
179(2)
Radical and Zerodivisors of Modules
181(2)
Annihilator and Support
183(1)
Kernel of a Module Homomorphism
184(1)
Solving Systems of Linear Equations
185(6)
Noether Normalization and Applications
191(48)
Finite and Integral Extensions
191(7)
The Integral Closure
198(7)
Dimension
205(5)
Noether Normalization
210(5)
Applications
215(9)
An Algorithm to Compute the Normalization
224(7)
Procedures
231(8)
Primary Decomposition and Related Topics
239(36)
The Theory of Primary Decomposition
239(5)
Zero--dimensional Primary Decomposition
244(9)
Higher Dimensional Primary Decomposition
253(5)
The Equidimensional Part of an Ideal
258(3)
The Radical
261(4)
Procedures
265(10)
Hilbert Function and Dimension
275(38)
The Hilbert Function and the Hilbert Polynomial
275(4)
Computation of the Hilbert-Poincare Series
279(4)
Properties of the Hilbert Polynomial
283(7)
Filtrations and the Lemma of Artin--Rees
290(2)
The Hilbert-Samuel Function
292(7)
Characterization of the Dimension of Local Rings
299(6)
Singular Locus
305(8)
Complete Local Rings
313(22)
Formal Power Series Rings
313(4)
Weierstraß Preparation Theorem
317(8)
Completions
325(6)
Standard Bases
331(4)
Homological Algebra
335(66)
Tor and Exactness
335(6)
Fitting Ideals
341(5)
Flatness
346(11)
Local Criteria for Flatness
357(5)
Flatness and Standard Bases
362(7)
Koszul Complex and Depth
369(13)
Cohen--Macaulay Rings
382(6)
Further Characterization of Cohen--Macaulayness
388(8)
Homological Characterization of Regular Rings
396(5)
Appendix
401(152)
A. Geometric Background
401(94)
A.1 Introduction by Pictures
401(9)
A.2 Affine Algebraic Varieties
410(11)
A.3 Spectrum and Affine Schemes
421(8)
A.4 Projective Varieties
429(12)
A.5 Projective Schemes and Varieties
441(5)
A.6 Morphisms Between Varieties
446(8)
A.7 Projective Morphisms and Elimination
454(14)
A.8 Local Versus Global Properties
468(14)
A.9 Singularities
482(13)
B. SINGULAR --- A Short Introduction
495(58)
B.1 Downloading Instructions
495(3)
B.2 Getting Started
498(4)
B.3 Procedures and Libraries
502(2)
B.4 Data Types
504(6)
B.5 Functions
510(16)
B.6 Control Structures
526(1)
B.7 System Variables
527(1)
B.8 Libraries
528(16)
B.9 Singular and Maple
544(4)
B.10 Singular and Mathematica
548(1)
B.11 Singular and MuPAD
549(4)
References
553(10)
Glossary
563(4)
Index
567(18)
Algorithms
585(2)
Singular--Examples
587