Muutke küpsiste eelistusi

E-raamat: Solutions Of Nonlinear Differential Equations: Existence Results Via The Variational Approach

(Chongqing Technology & Business Univ, China), (Chongqing Technology & Business Univ, China)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 52,65 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Li and Song demonstrate how variational methods can be used in nonlinear differential equations, but begin by reviewing prerequisites such as Sobolev space and the variational principle for readers who are a little rusty. The other topics are quasilinear fourth-order problems, Kirchhoff problems, nonlinear field problems, gradient systems, and variable exponent problems. Except for references to the basic results in the first chapter, each chapter is essentially a stand-alone entity that can be read with little reference to the other chapters. Annotation ©2016 Ringgold, Inc., Portland, OR (protoview.com)

Variational methods are very powerful techniques in nonlinear analysis and are extensively used in many disciplines of pure and applied mathematics (including ordinary and partial differential equations, mathematical physics, gauge theory, and geometrical analysis).In our first chapter, we gather the basic notions and fundamental theorems that will be applied throughout the chapters. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with how variational methods can be used in fourth-order problems, Kirchhoff problems, nonlinear field problems, gradient systems, and variable exponent problems. A very extensive bibliography is also included.
Preface vii
Some Notations and Conventions xi
1 Preliminaries and Variational Principles
1(24)
1.1 Sobolev Spaces
1(6)
1.2 Differentiable Functionals
7(3)
1.3 Ekeland's Variational Principle
10(2)
1.4 Minimax Principles
12(6)
1.5 Ricceri's Variational Results
18(7)
1.5.1 Three Critical Point Results
18(4)
1.5.2 A General Variational Principle
22(3)
2 Quasilinear Fourth-Order Problems
25(32)
2.1 Introduction
25(1)
2.2 Multiple Solutions of Quasilinear Fourth-Order Problems
25(8)
2.3 Infinitely Many Solutions of Quasilinear Fourth-Order Problems
33(11)
2.4 Quasilinear Fourth-Order Problems with Singular Term
44(7)
2.5 Semilinear Fourth-Order Problems on RN
51(6)
3 Kirchhoff Problems
57(64)
3.1 Introduction
57(1)
3.2 Radial Solutions of Kirchhoff Problems
58(7)
3.3 Multiple Solutions of Nonhomogeneous Problems
65(9)
3.4 Multiple Solutions with Superlinear Nonlinearities
74(11)
3.5 Multiple Solutions with Asymptotically Linear Nonlinearities
85(14)
3.6 Infinitely Many Solutions with Sublinear Nonlinearities
99(13)
3.7 Multiple Solutions with Combined Nonlinearities
112(9)
4 Nonlinear Field Problems
121(104)
4.1 Introduction
121(1)
4.2 Schrodinger--Maxwell Equations
122(52)
4.2.1 Infinitely Many Solutions with Superlinear Nonlinearities
122(8)
4.2.2 Multiple Solutions with Asymptotically Linear Nonlinearities
130(21)
4.2.3 Quasilinear Schrodinger--Maxwell Equations
151(23)
4.3 Klein--Gordon--Maxwell Systems
174(51)
4.3.1 Infinitely Many Solutions
174(16)
4.3.2 Sign-Changing Potential
190(9)
4.3.3 Multiple Solutions without Odd Nonlinearities
199(10)
4.3.4 Partially Sublinear Nonlinearities
209(4)
4.3.5 Klein--Gordon Equation Coupled with Born--Infeld Theory
213(12)
5 Gradient Systems
225(52)
5.1 Introduction
225(1)
5.2 One Dimension Systems
225(31)
5.2.1 Two-Point Boundary Value Systems
225(8)
5.2.2 Hamiltonian Systems
233(14)
5.2.3 Quasilinear Hamiltonian Systems
247(9)
5.3 N Dimension Systems
256(21)
5.3.1 Resonance Elliptic Systems
256(7)
5.3.2 Quasilinear Fourth-Order Elliptic Systems
263(14)
6 Variable Exponent Problems
277(36)
6.1 Introduction
277(1)
6.2 p(x)-Laplacian Problems
277(6)
6.3 p(x)-Laplacian-Like Problems
283(8)
6.4 p(x)-Biharmonic Problems
291(13)
6.5 Two Parameter p(x)-Biharmonic Problems
304(9)
Bibliography 313(34)
Index 347