Muutke küpsiste eelistusi

E-raamat: On the Steady Motion of a Coupled System Solid-Liquid

  • Formaat - PDF+DRM
  • Hind: 95,47 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The authors study the unconstrained (free) motion of an elastic solid $\mathcal B$ in a Navier-Stokes liquid $\mathcal L$ occupying the whole space outside $\mathcal B$, under the assumption that a constant body force $\mathfrak b$ is acting on $\mathcal B$. More specifically, the authors are interested in the steady motion of the coupled system $\{\mathcal B,\mathcal L\}$, which means that there exists a frame with respect to which the relevant governing equations possess a time-independent solution. The authors prove the existence of such a frame, provided some smallness restrictions are imposed on the physical parameters, and the reference configuration of $\mathcal B$ satisfies suitable geometric properties.
Chapter 1 Introduction
1(4)
Chapter 2 Notation and Preliminaries
5(6)
2.1 Notation
5(3)
2.2 Preliminaries
8(3)
Chapter 3 Steady Free Motion: Definition and Formulation of the Problem
11(8)
3.1 Equations of Motion for the Elastic Body
11(1)
3.2 Equations of Motion for the Liquid
12(1)
3.3 Definition of a Steady Free Motion
13(4)
3.4 Non-dimensionlization
17(2)
Chapter 4 Main Result
19(20)
4.1 Strategy of Proof
19(1)
4.2 Isolated Orientation
20(3)
4.3 Statement of the Main Theorem
23(1)
4.4 Perturbation Parameter
24(2)
4.5 The Stokes Problem
26(6)
4.6 Perturbing Around an Isolated Orientation
32(4)
4.7 Compatibility Conditions
36(3)
Chapter 5 Approximating Problem in Bounded Domains
39(24)
5.1 Fixed-Point Approach
40(1)
5.2 Validity of the Compatibility Conditions
41(3)
5.3 Solvability of the Fluid Equations
44(13)
5.4 Solvability of the Elasticity Equations
57(1)
5.5 Existence in a Bounded Domain
58(5)
Chapter 6 Proof of Main Theorem
63(6)
Chapter 7 Bodies with Symmetry
69(14)
7.1 Symmetry Function Spaces
69(1)
7.2 Main Theorem for Symmetric Bodies
70(1)
7.3 Stokes Problem for a Symmetric Body
70(1)
7.4 Reformulation of the Equations of Motion
71(2)
7.5 Compatibility Conditions
73(1)
7.6 Approximating Problem in Bounded Domains
74(1)
7.7 Fixed-Point Approach
75(1)
7.8 Validity of the Compatibility Conditions
75(1)
7.9 Solvability of the Fluid Equations
76(1)
7.10 Solvability of the Elasticity Equations
77(2)
7.11 Existence in a Bounded Domain
79(1)
7.12 Proof of Main Theorem for Symmetric Bodies
79(1)
7.13 Examples
80(3)
Appendix A Isolated Orientation 83(4)
Bibliography 87