Preface |
|
ix | |
|
1 Introduction and Main Concepts |
|
|
1 | (20) |
|
|
1 | (4) |
|
1.1.1 Linear Dynamical Systems |
|
|
2 | (1) |
|
1.1.2 Nonlinear Dynamical Systems |
|
|
3 | (1) |
|
1.1.3 Autonomous and Nonautonomous Systems |
|
|
4 | (1) |
|
1.1.4 Conservative and Dissipative Systems |
|
|
4 | (1) |
|
|
5 | (4) |
|
|
6 | (1) |
|
|
6 | (2) |
|
|
8 | (1) |
|
|
9 | (2) |
|
1.3.1 Types of Attractors |
|
|
9 | (1) |
|
1.3.2 Basins of Attraction and Poincare Maps |
|
|
10 | (1) |
|
1.4 Stability of Dynamical Systems |
|
|
11 | (10) |
|
1.4.1 Linear Stability Analysis |
|
|
11 | (2) |
|
|
13 | (1) |
|
|
14 | (7) |
|
2 Low-Dimensional Systems |
|
|
21 | (56) |
|
2.1 A Brief History of Synchronization |
|
|
21 | (2) |
|
|
23 | (3) |
|
|
26 | (8) |
|
2.3.1 Unidirectionally Coupled Phase Oscillators |
|
|
28 | (3) |
|
2.3.2 Mutually Coupled Phase Oscillators |
|
|
31 | (1) |
|
2.3.3 Frequency-Splitting Bifurcation |
|
|
31 | (3) |
|
2.4 Complete Synchronization |
|
|
34 | (13) |
|
2.4.1 Measures of Complete Synchronization |
|
|
34 | (1) |
|
2.4.2 Bidirectional Coupling |
|
|
35 | (1) |
|
2.4.3 Unidirectional Coupling |
|
|
36 | (3) |
|
2.4.4 Conditional Lyapunov Exponents for Discrete Systems |
|
|
39 | (2) |
|
2.4.5 Example of Coupled Rossler-Like Oscillators |
|
|
41 | (4) |
|
2.4.6 Stability of the Synchronization Manifold |
|
|
45 | (2) |
|
2.5 Phase Synchronization |
|
|
47 | (13) |
|
2.5.1 Defining Phases in Chaotic Systems |
|
|
47 | (5) |
|
2.5.2 Measures of Phase Synchronization |
|
|
52 | (3) |
|
2.5.3 Example: Ring of Rossler Oscillators |
|
|
55 | (5) |
|
2.6 Lag and Anticipating Synchronization |
|
|
60 | (4) |
|
2.7 Coherence Enhancement |
|
|
64 | (4) |
|
2.7.1 Deterministic Coherence Resonance |
|
|
66 | (1) |
|
2.7.2 Stabilization of Periodic Orbits in a Ring of Coupled Chaotic Oscillators |
|
|
66 | (2) |
|
2.8 Generalized Synchronization |
|
|
68 | (7) |
|
2.8.1 Generalized Synchronization in Unidirectionally Coupled Systems |
|
|
69 | (5) |
|
2.8.2 Generalized Synchronization in Bidirectionally Coupled Systems |
|
|
74 | (1) |
|
2.9 A Unifying Mathematical Framework for Synchronization |
|
|
75 | (2) |
|
3 Multistable Systems, Coupled Neurons, and Applications |
|
|
77 | (47) |
|
3.1 Unidirectionally Coupled Multistable Systems |
|
|
79 | (13) |
|
3.1.1 Synchronization States |
|
|
79 | (1) |
|
|
80 | (12) |
|
3.2 Systems with a Common External Force: Crowd Formation |
|
|
92 | (6) |
|
3.2.1 A Numerical Example |
|
|
94 | (4) |
|
3.3 Bidirectionally Coupled Systems |
|
|
98 | (3) |
|
3.4 Synchronization of Coupled Neurons |
|
|
101 | (11) |
|
3.4.1 Synchronization of Neurons with Memory |
|
|
102 | (2) |
|
3.4.2 Synchronization of Neurons with Arbitrary Phase Shift |
|
|
104 | (5) |
|
|
109 | (3) |
|
3.5 Chaos Synchronization for Secure Communication |
|
|
112 | (12) |
|
3.5.1 Communication Using Chaotic Semiconductor Lasers |
|
|
114 | (2) |
|
3.5.2 One-Channel Communication Scheme |
|
|
116 | (3) |
|
3.5.3 Two-Channel Communication Scheme |
|
|
119 | (5) |
|
4 High-Dimensional Systems |
|
|
124 | (61) |
|
|
124 | (20) |
|
4.1.1 Derivation from a Generic Oscillator Model |
|
|
125 | (2) |
|
|
127 | (3) |
|
4.1.3 The Kuramoto Order Parameter |
|
|
130 | (2) |
|
4.1.4 Numerical Phenomenology for Large N |
|
|
132 | (3) |
|
|
135 | (6) |
|
4.1.6 Kuramoto Model with Time-Varying Links |
|
|
141 | (3) |
|
4.2 High-Dimensional Systems with Spatial Topologies |
|
|
144 | (3) |
|
4.2.1 Spatially Discrete versus Spatially Continuous Systems |
|
|
144 | (1) |
|
4.2.2 Terminology of Coupling Schemes |
|
|
145 | (2) |
|
|
147 | (19) |
|
4.3.1 Numerical Phenomenology of the Classical Chimera State |
|
|
148 | (5) |
|
4.3.2 Classical versus Generalized Chimera States |
|
|
153 | (7) |
|
4.3.3 Experimental Implementation of Chimera States |
|
|
160 | (4) |
|
|
164 | (2) |
|
|
166 | (2) |
|
4.5 Oscillation Quenching |
|
|
168 | (8) |
|
|
169 | (4) |
|
|
173 | (2) |
|
|
175 | (1) |
|
4.6 Auto-Synchronization and Time-Delayed Feedback |
|
|
176 | (9) |
|
|
177 | (2) |
|
4.6.2 Experimental Realization |
|
|
179 | (1) |
|
|
180 | (5) |
|
|
185 | (52) |
|
|
185 | (3) |
|
5.2 Master Stability Function |
|
|
188 | (7) |
|
5.2.1 Derivation of the Master Stability Function |
|
|
188 | (4) |
|
5.2.2 Classes of Synchronizability |
|
|
192 | (3) |
|
|
195 | (7) |
|
|
196 | (3) |
|
5.3.2 The Watts--Strogatz Model |
|
|
199 | (3) |
|
5.4 Preferential Attachment Networks |
|
|
202 | (2) |
|
|
204 | (18) |
|
5.5.1 Minimum Degree Upper Bound for the Spectral Gap |
|
|
204 | (3) |
|
5.5.2 Connectivity Lower Bound on the Spectral Gap |
|
|
207 | (7) |
|
5.5.3 Diameter Lower Bound for the Spectral Gap |
|
|
214 | (4) |
|
5.5.4 Degree Bounds on λN |
|
|
218 | (2) |
|
|
220 | (2) |
|
5.6 Enhancing and Optimizing Synchronization of Complex Networks |
|
|
222 | (1) |
|
5.7 Explosive Synchronization in Complex Networks |
|
|
223 | (1) |
|
5.8 Synchronization in Temporal and Multilayer Networks |
|
|
224 | (7) |
|
5.8.1 Time-Varying Networks |
|
|
224 | (2) |
|
5.8.2 Synchronization in Multilayer Networks |
|
|
226 | (3) |
|
5.8.3 Application of the Master Stability Function to Multistable Dynamical Systems |
|
|
229 | (2) |
|
5.9 Single-Oscillator Experiments |
|
|
231 | (6) |
|
|
231 | (1) |
|
|
232 | (2) |
|
5.9.3 Network of Piecewise Rossler Oscillators |
|
|
234 | (1) |
|
5.9.4 Synchronization Error |
|
|
235 | (2) |
References |
|
237 | (15) |
Index |
|
252 | |