Muutke küpsiste eelistusi

Topics in Fractional Differential Equations 2012 ed. [Pehme köide]

  • Formaat: Paperback / softback, 398 pages, kõrgus x laius: 235x155 mm, kaal: 629 g, XIV, 398 p., 1 Paperback / softback
  • Sari: Developments in Mathematics 27
  • Ilmumisaeg: 19-Sep-2014
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1489995471
  • ISBN-13: 9781489995476
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 398 pages, kõrgus x laius: 235x155 mm, kaal: 629 g, XIV, 398 p., 1 Paperback / softback
  • Sari: Developments in Mathematics 27
  • Ilmumisaeg: 19-Sep-2014
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1489995471
  • ISBN-13: 9781489995476
??? Topics in Fractional Differential Equations is devoted to the existence and uniqueness of solutions for various classes of Darboux problems for hyperbolic differential equations or inclusions involving the Caputo fractional derivative. ??Fractional calculus generalizes the integrals and derivatives to non-integer orders. During the last decade, fractional calculus was found to play a fundamental role in the modeling of a considerable number of phenomena; in particular the modeling of memory-dependent and complex media such as porous media. It has emerged as an important tool for the study of dynamical systems where classical methods reveal strong limitations. Some equations present delays which may be finite, infinite, or state-dependent. Others are subject to an impulsive effect. The above problems are studied using the fixed point approach, the method of upper and lower solution, and the Kuratowski measure of noncompactness. This book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists. ?

This is devoted to exploration of the existence and uniqueness of solutions for various classes of Darboux problems for hyperbolic differential equations or inclusions involving the Caputo fractional derivative.
Preface.-
1. Preliminary Background.-
2. Partial Hyperbolic Functional
Differential Equations.-
3. Partial Hyperbolic Functional Differential
Inclusions.-
4. Impulsive Partial Hyperbolic Functional Differential
Equations.-
5. Impulsive Partial Hyperbolic Functional Differential
Inclusions.-
6. Implicit Partial Hyperbolic Functional Differential
Equations.-
7. Fractional Order Riemann-Liouville Integral Equations.-
References.- Index.