Muutke küpsiste eelistusi

E-raamat: Ultrashort Pulse Lasers and Ultrafast Phenomena [Taylor & Francis e-raamat]

(University of Tokyo, Japan)
  • Formaat: 682 pages, 28 Tables, black and white; 278 Halftones, color; 60 Halftones, black and white; 278 Illustrations, color; 60 Illustrations, black and white
  • Ilmumisaeg: 21-Mar-2023
  • Kirjastus: CRC Press
  • ISBN-13: 9780429196577
  • Taylor & Francis e-raamat
  • Hind: 244,66 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 349,51 €
  • Säästad 30%
  • Formaat: 682 pages, 28 Tables, black and white; 278 Halftones, color; 60 Halftones, black and white; 278 Illustrations, color; 60 Illustrations, black and white
  • Ilmumisaeg: 21-Mar-2023
  • Kirjastus: CRC Press
  • ISBN-13: 9780429196577
This book describes the basic physical principles of techniques to generate and ultrashort pulse lasers and applications to ultrafast spectroscopy of various materials covering chemical molecular compounds, solid-state materials, exotic novel materials including topological materials, biological molecules and bio- and synthetic polymers. It introduces non-linear optics which provides the basics of generation and measurement of pulses and application examples of ultrafast spectroscopy to solid state physics. Also it provide not only material properties but also material processing procedures. The book describes also details of the world shortest visible laser and DUV lasers developed by the authors group. It is composed of the following 12 Sections: The special features of this book is that it is written by a single author with a few collaborators in a systematic way. Hence it provides a comprehensive and systematic description of the research field of ultrashort pulse lasers and ultrafast spectroscopy.





Generation of ultrashort pulses in deep ultraviolet to near infrared Generation of ultrashort pulses in terahertz Carrier envelope phase (CEP) Simple NLO processes with a few colors Multi-color involved NLO processes Multi-color ultrashort pulse generation NLO materials NLO processes in time-resolved spectroscopy Low dimension materials Conductors and superconductors Chemical reactions and material processing Photobiological reactions
Preface xxiii
Author xxv
SECTION 1 Generation of Ultrashort Pulses in Deep Ultraviolet to Near Infrared
SECTION 1.1 Ultrashort Visible Near-Infrared Pulses
Chapter 1.1.1 Noncollinearly Phase-Matched Femtosecond Optical Parametric Amplification with a 2000 cm-1 Bandwidth
5(6)
References
9(2)
Chapter 1.1.2 Simultaneous Compression and Amplification of a Laser Pulse in a Glass Plate
11(8)
1.1.2.1 Introduction
11(1)
1.1.2.2 Principle
11(1)
1.1.2.3 Experimental Setup
12(1)
1.1.2.4 Experimental Results and Discussion
13(3)
1.1.2.5 Conclusion
16(1)
References
16(3)
Chapter 1.1.3 Pulse-Front-Matched Optical Parametric Amplification for Sub-10-fs Pulse Generation Tunable in the Visible and Near Infrared
19(6)
1.1.3.1 Introduction
19(1)
1.1.3.2 Experimental
19(1)
1.1.3.3 Results and Discussion
20(2)
1.1.3.4 Conclusion
22(1)
References
23(2)
Chapter 1.1.4 Visible 4fs Pulse from Dispersion Control Optical Parametric Amplifier
25(6)
1.1.4.1 Introduction
25(1)
1.1.4.2 Configuration of the System
26(2)
1.1.4.3 Analysis and Discussion
28(1)
1.1.4.4 Conclusion
28(1)
References
29(2)
Chapter 1.1.5 Ultrafast Laser System Based on Noncollinear Optical Parametric Amplification for Laser Spectroscopy
31(6)
1.1.5.1 Introduction
31(1)
1.1.5.2 Experimental
32(1)
1.1.5.3 Results and Discussion
32(2)
1.1.5.4 Conclusion
34(1)
References
35(2)
Chapter 1.1.6 Development of Ultrashort Pulse Lasers for Ultrafast Spectroscopy
37(14)
1.1.6.1 Introduction
37(1)
1.1.6.2 Light Sources for Studying Ultrafast Processes
38(1)
1.1.6.3 Electronic Relaxation and Vibrational Dynamics
38(1)
1.1.6.4 Principles and Advantages of Broad-Band Ultrafast Spectroscopy
39(1)
1.1.6.5 Ultrashort Visible Pulse Generation Based on Non-Linear Optical Parametric Amplifier (NORA)
40(2)
1.1.6.6 Ultrashort Deep Ultraviolet Laser
42(1)
1.1.6.6.1 DUV Pulse Generation
42(1)
1.1.6.6.2 Sub-10 fs DUV Laser Pulse Obtained by Broad-Band CPFWM
43(1)
1.1.6.6.3 DUV Pulse Stability Optimization
44(1)
1.1.6.7 Conclusion
45(1)
References
45(6)
SECTION 1.2 Ultrashort Ultraviolet, Deep-Ultraviolet, and Infrared Pulses
Chapter 1.2.1 Generation of Stable Sub-lOfs Pulses at 400nm in a Hollow Fiber for UV Pump-Probe Experiment
51(8)
1.2.1.1 Introduction
51(1)
1.2.1.2 Experimental Setup
51(1)
1.2.1.3 Experimental Results and Discussion
52(5)
1.2.1.4 Conclusion
57(1)
References
57(2)
Chapter 1.2.2 Sub-lOfs Deep-Ultraviolet Pulses Generated by Chirped-Pulse Four-Wave Mixing
59(4)
1.2.2.1 Introduction
59(1)
1.2.2.2 Experimental
60(1)
1.2.2.3 Results and Discussion
60(2)
1.2.2.4 Conclusion
62(1)
References
62(1)
Chapter 1.2.3 Generation and Optimization of Femtosecond Pulses by Four-Wave Mixing Process
63(22)
1.2.3.1 Introduction
63(1)
1.2.3.2 Cascaded FWM in Bulk Media
64(1)
1.2.3.2.1 Principle of Cascaded FWM
64(1)
1.2.3.2.2 Generation of Wavelength-Tunable Self-Compressed Multicolored Pulses by Nondegenerate Cascaded FWM
65(2)
1.2.3.2.3 Pulse Cleaning by Degenerate Cascaded FWM
67(3)
1.2.3.3 UV Pulse Generation by FWM in Hollow Fiber
70(1)
1.2.3.3.1 Chirped-Pulse FWM in a Gas-Filled Hollow Waveguide
71(1)
1.2.3.3.2 Broadband Chirped-Pulse FWM
72(1)
1.2.3.3.3 Practical Issues in Broadband Chirped-Pulse FWM
73(1)
1.2.3.3.4 Sub-10-fs DUV Pulses Generated by Broadband Chirped-Pulse FWM
74(1)
1.2.3.4 Four-Wave Optical Parametric Amplification (FWOPA) in Bulk Media
75(2)
1.2.3.5 Conclusion and Prospects
77(1)
References
78(7)
SECTION 2 Generation of Ultrashort Pulses in Terahertz
Chapter 2.1 Sellmeier Dispersion for Phase-Matched Terahertz Generation in Nonlinear Optical Crystal: An Example of ZnGeP2
85(6)
2.1.1 Introduction
85(1)
2.1.2 Derivation of the Sellmeier Dispersion
86(1)
2.1.3 Generation of Terahertz Radiation with a Nd: YAG Laser
87(1)
2.1.4 Generation of Terahertz Radiation with C02 Lasers
88(1)
2.1.5 Discussion
89(1)
2.1.6 Conclusion
89(2)
References
90(1)
Chapter 2.2 Saturation of the Free Carrier Absorption in ZnTe Crystals
91(10)
2.2.1 Introduction
91(1)
2.2.2 Experiments
91(1)
2.2.2.1 THz Generation in ZnTe Crystals
91(3)
2.2.2.2 Photoluminescence Radiated from ZnTe Crystals
94(1)
2.2.3 Discussion
94(3)
2.2.4 Conclusion
97(1)
References
98(3)
Chapter 2.3 Widely Linear and Non-Phase-Matched Optical-to-Terahertz Conversion on GaSe: Te Crystals
101(6)
2.3.1 Introduction
101(1)
2.3.2 Experimental
101(1)
2.3.3 Results and Discussions
102(2)
2.3.4 Conclusion
104(1)
References
105(2)
Chapter 2.4 THz Emission from Organic Cocrystalline Salt: An Example of 2,6-Diaminopyridinium-4-Nitrophenolate-4-Nitrophenol
107(8)
2.4.1 Introduction
107(1)
2.4.2 Sample Preparation and THz Emission Experiments
107(1)
2.4.3 Results and Discussion
108(3)
2.4.4 Summary
111(1)
References
111(4)
SECTION 3 CEP (Octave-Span)
Chapter 3.1 Quasi-Monocyclic Near-Infrared Pulses with a Stabilized Carrier-Envelope Phase Characterized by Noncollinear Cross-Correlation Frequency-Resolved Optical Gating
115(6)
3.1.1 Introduction
115(1)
3.1.2 Experimental
115(3)
3.1.3 Conclusion
118(1)
References
118(3)
Chapter 3.2 Self-Stabilization of the Carrier-Envelope Phase of an Optical Parametric Amplifier Verified with a Photonic Crystal Fiber
121(6)
3.2.1 Introduction
121(1)
3.2.2 Experimental
122(1)
3.2.3 Results and Discussion
122(2)
3.2.4 Conclusion
124(1)
References
124(3)
Chapter 3.3 Octave-Spanning Carrier-Envelope Phase Stabilized Visible Pulse with Sub-3-fs Pulse Duration
127(6)
3.3.1 Introduction
127(1)
3.3.2 Results and Discussion
127(3)
3.3.3 Conclusion
130(1)
References
130(3)
Chapter 3.4 Carrier-Envelope-Phase-Stable, Intense Ultrashort Pulses in Near Infrared
133(8)
3.4.1 Introduction
133(1)
3.4.2 Experimental
134(1)
3.4.3 Results and Discussion
134(2)
3.4.4 Conclusion
136(1)
References
136(5)
SECTION 4 Simple NLO Processes with a Few Colors
Chapter 4.1 Three-Photon-Induced Four-Photon Absorption and Nonlinear Refraction in ZnO Quantum Dots
141(6)
4.1.1 Introduction
141(1)
4.1.2 Experimental
141(1)
4.1.3 Results and Discussion
141(3)
4.1.4 Conclusion
144(1)
References
145(2)
Chapter 4.2 Femtosecond Pulses Cleaning by Transient-Grating Process in Optical Media
147(6)
4.2.1 Introduction
147(1)
4.2.2 Experimental
148(1)
4.2.3 Results and Discussion
149(1)
4.2.4 Conclusion
150(1)
References
150(3)
Chapter 4.3 Non-Degenerate Two-Photon Absorption Enhancement for Laser Dyes by Precise Lock-in Detection
153(14)
4.3.1 Introduction
153(1)
4.3.2 Theory
154(1)
4.3.3 Experimental Procedures
155(1)
4.3.4 Results and Discussion
156(5)
4.3.5 Conclusion
161(1)
References
162(5)
SECTION 5 Multi-Color Involved NLO Processes
Chapter 5.1 Generation of uJ-Level Multicolored Femtosecond Laser Pulses Using Cascaded Four-Wave Mixing
167(6)
5.1.1 Introduction
167(1)
5.1.2 Experimental Setup
167(1)
5.1.3 Experimental Results and Discussion
168(3)
5.1.4 Conclusion
171(1)
References
171(2)
Chapter 5.2 Generation and Optimization of Femtosecond Pulses by Four-Wave Mixing (FWM) Process
173(20)
5.2.1 Introduction
173(1)
5.2.2 Cascaded FWM in Bulk Media
174(1)
5.2.2.1 Principle of Cascaded Four-Wave Mixing (FWM)
174(1)
5.2.2.2 Generation of Wavelength-Tunable Self-Compressed Multicolored Pulses by Nondegenerate Cascaded FWM
175(2)
5.2.2.3 Pulse Cleaning by Degenerate Cascaded FWM
177(3)
5.2.3 UV Pulse Generation by FWM in Hollow Fiber
180(1)
5.2.3.1 Chirped-Pulse FWM in a Gas-Filled Hollow Waveguide
180(2)
5.2.3.2 Broadband Chirped-Pulse FWM
182(1)
5.2.3.3 Practical Issues in Broadband Chirped-Pulse FWM
183(1)
5.2.3.4 Sub-10-fs DUV Pulses Generated by Broadband Chirped-Pulse FWM
184(1)
5.2.4 FWOPA in Bulk Media
185(1)
5.2.5 Conclusion and Prospects
186(1)
References
187(6)
Chapter 5.3 Tunable Multicolored Femtosecond Laser Pulses Generation by Using Cascaded Four-Wave Mixing (CFWM) in Bulk Materials
193(20)
5.3.1 Introduction
193(1)
5.3.2 Theoretical Analysis
194(1)
5.3.2.1 FWM Process
194(1)
5.3.2.2 CFWM Process
195(1)
5.3.3 Experimental Characteristics of Multicolored Pulses
196(1)
5.3.3.1 Experimental Setups
196(3)
5.3.3.2 Spectra and Wavelength Tuning of Multicolored Sidebands
199(1)
5.3.3.2.1 Tuning the Wavelength of Sidebands by Changing Cross-Angle
199(1)
5.3.3.2.2 Tuning the Wavelength of Sidebands by Changing Nonlinear Media
199(1)
5.3.3.3 Temporal Characteristics of Multicolored Pulses
200(1)
5.3.3.4 Output Power/Energy of Multicolored Pulses
201(2)
5.3.3.5 Multicolored Sidebands Generated with Low Threshold
203(2)
5.3.4 2-D Multicolored Sidebands Arrays
205(3)
5.3.5 Conclusion and Prospects
208(1)
References
208(5)
Chapter 5.4 Mechanism Study of 2-D Laser Array Generation in a YAG Crystal Plate
213(8)
5.4.1 Introduction
213(1)
5.4.2 Numerical Simulation Model
213(2)
5.4.3 Results and Discussion
215(2)
5.4.4 Conclusion
217(1)
References
217(4)
SECTION 6 Broadband Ultrashort Pulse Generation
Chapter 6.1 Broadband Coherent Anti-Stokes Raman Scattering Light Generation in BBO Crystal by Using Two Crossing Femtosecond Laser Pulses
221(6)
6.1.1 Introduction
221(1)
6.1.2 Experimental
221(1)
6.1.3 Results and Discussion
221(4)
6.1.4 Conclusion
225(1)
References
225(2)
Chapter 6.2 Generation of Broadband Two-Dimensional Multicolored Arrays in a Sapphire Plate
227(8)
6.2.1 Experimental
227(1)
6.2.2 Experimental Setup
227(1)
6.2.3 Experimental Results and Discussion
228(4)
6.2.4 Conclusion
232(1)
References
232(3)
SECTION 7 NLO Materials
Chapter 7.1 Sellmeier Dispersion for Phase-Matched Terahertz Generation in ZnGeP2
235(6)
7.1.1 Introduction
235(1)
7.1.2 Derivation of the Sellmeier Dispersion
236(1)
7.1.3 Generation of Terahertz Radiation with a Nd: YAG Laser
237(1)
7.1.4 Generation of Terahertz Radiation with COz Lasers
238(1)
7.1.5 Discussion
239(1)
7.1.6 Conclusion
239(1)
References
240(1)
Chapter 7.2 Broadband Sum-Frequency Mixing (SFM) in Some Recently Developed Nonlinear Optical Crystals
241(10)
7.2.1 Introduction
241(1)
7.2.2 Schematic of the Experimental Arrangement
242(1)
7.2.3 Theoretical Background of Phase Matching and Broadband SFM
243(1)
7.2.4 Results and Discussion
244(2)
7.2.5 Broadly Tunable Conventional SFM in a Thin Crystal
246(1)
7.2.6 Conclusion
247(2)
References
249(2)
Chapter 7.3 Optimal Te-Doping in GaSe for Nonlinear Applications
251(10)
7.3.1 Introduction
251(1)
7.3.2 Crystal Growth and Characterization
252(1)
7.3.2.1 Growth Technology
252(1)
7.3.2.2 Optical Properties
253(3)
7.3.2.3 THz Generation via Optical Rectification
256(1)
7.3.3 Discussion
257(1)
7.3.4 Conclusion
258(1)
References
258(3)
Chapter 7.4 Widely Linear and Non-Phase-Matched Optical-to-Terahertz Conversion on GaSe: Te Crystals
261(8)
7.4.1 Introduction
261(1)
7.4.2 Experimental
261(1)
7.4.3 Results and Discussion
262(3)
7.4.4 Conclusion
265(1)
References
265(4)
SECTION 8 NLO Processes in Time-Resolved Spectroscopy
Chapter 8.1 Elimination of Coherence Spike in Reflection-Type Pump-Probe Measurements
269(6)
8.1.1 Introduction
269(1)
8.1.2 Experiments
269(1)
8.1.3 Results and Discussion
270(3)
8.1.4 Summary
273(1)
References
274(1)
Chapter 8.2 Vibrational Fine Structures Revealed by the Frequency-to-Time Fourier Transform of the Transient Spectrum in Bacteriorhodopsin
275(12)
8.2.1 Introduction
275(1)
8.2.2 Experimental Section
276(1)
8.2.3 Results and Discussion
276(5)
8.2.4 Conclusions
281(1)
References
282(5)
SECTION 9 Low Dimensional (D) Materials SECTION 9.1 OD
Chapter 9.1.1 Superior Local Conductivity in Self-Organized Nanodots on Indium-Tin-Oxide Films Induced by Femtosecond Laser Pulses
287(12)
9.1.1.1 Introduction
287(1)
9.1.1.2 Experiments
288(1)
9.1.1.3 Results and Discussion
289(6)
9.1.1.4 Conclusion
295(1)
References
296(3)
Chapter 9.1.2 Observation of an Excitonic Quantum Coherence in CdSe Nanocrystals
299(14)
9.1.2.1 Introduction
299(1)
9.1.2.2 Experimental
299(1)
9.1.2.3 Results and Discussion
300(7)
9.1.2.4 Conclusion
307(1)
Supporting Information
308(1)
References
309(4)
SECTION 9.2 1DCNT
Chapter 9.2.1 Coherent Phonon Generation in Semiconducting Single-Walled Carbon Nanotubes Using a Few-Cycle Pulse Laser
313(8)
9.2.1.1 Introduction
313(1)
9.2.1.2 Experimental Details
314(1)
9.2.1.3 Results and Discussion
314(1)
9.2.1.3.1 Stationary Absorption Spectrum of the Sample and Laser Spectrum
314(1)
9.2.1.3.2 Two-Dimensional (2D) Real-Time Spectra and Exact Chirality Assignment
314(1)
9.2.1.3.3 Probe Photon Energy Dependent Amplitude Profiles
315(4)
9.2.1.4 Conclusion
319(1)
References
319(2)
Chapter 9.2.2 Electronic Relaxation and Coherent Phonon Dynamics in Semiconducting Single-Walled Carbon Nanotubes with Several Chiralities
321(24)
9.2.2.1 Introduction
321(21)
9.2.2.2 Experiment
323(1)
9.2.2.2.1 Ultrafast Spectroscopy
323(1)
9.2.2.2.2 Sample Preparation
323(1)
9.2.2.3 Results and Discussion
324(1)
9.2.2.3.1 Stationary Absorption Spectrum
324(2)
9.2.2.3.2 Electronic Relaxation and Thermalization of Excited Population
326(2)
9.2.2.3.3 FT Spectra and Chirality Assignments
328(2)
9.2.2.3.4 CP Amplitudes of Chiral Systems
330(1)
9.2.2.3.5 Raman Processes in a Classical Model
331(1)
9.2.2.3.6 Raman and Raman-Like Processes in a Semiclassical Model
332(2)
9.2.2.3.7 Probe Photon Energy Dependence of the Vibrational Amplitudes
334(2)
9.2.2.3.8 Fitting the Amplitude Spectrum with Contributions from the Real and Imaginary Parts of the Third-Order Susceptibility
336(2)
9.2.2.3.9 Size and Meaning of the Contribution from the Real Part of the Third-Order Susceptibility
338(2)
9.2.2.3.10 RBMs Studied by the Moment Calculation
340(2)
9.2.2.4 Conclusions
342(3)
References
342(2)
Supplemental Material
344(1)
Supporting Information: Sample Morphology
344(1)
Chapter 9.2.3 Coherent Phonon Coupled with Exciton in Semiconducting Single-Walled Carbon Nanotubes Using a Few-Cycle Pulse Laser
345(6)
9.2.3.1 Introduction
345(1)
9.2.3.2 Experiment
346(1)
9.2.3.3 Results and Discussion
346(1)
9.2.3.3.1 Electronic Relaxation and Thermalization of Excited Population
346(1)
9.2.3.3.2 Fourier-Transform (FT) Spectra and Chirality Assignments
347(1)
9.2.3.3.3 Fitting the Amplitude Spectrum with Contributions from the Real and Imaginary Parts of the Third-Order Susceptibility
348(1)
9.2.3.4 Conclusions
348(1)
Acknowledgments
349(1)
References
350(1)
Chapter 9.2.4 Real-Time Spectroscopy of Single-Walled Carbon Nanotubes for Negative Time Delays by Using a Few-Cycle Pulse Laser
351(18)
9.2.4.1 Introduction
351(1)
9.2.4.2 Experimental Method
352(1)
9.2.4.2.1 Pump-Probe Experiment
352(1)
9.2.4.2.2 Sample Preparation
352(1)
9.2.4.3 Results and Discussion
352(1)
9.2.4.3.1 Stationary Absorption Spectrum
352(1)
9.2.4.3.2 Two-Dimensional (2D) Real-Time Vibration Spectra
353(3)
9.2.4.3.3 Electronic Phase Relaxation Time
356(3)
9.2.4.3.4 Fourier Transform Power Spectra and Probe Photon Energy-Dependent Amplitudes
359(3)
9.2.4.4 Conclusions
362(1)
References
363(6)
SECTION 9.3 ID Oligomers and Polymers
Chapter 9.3.1 Fluorescence from Molecules and Aggregates in Polycrystalline Thin Films of a-Oligothiophenes
369(14)
9.3.1.1 Introduction
369(1)
9.3.1.2 Experiment
370(1)
9.3.1.3 Results and Discussion
370(1)
9.3.1.3.1 Absorption and Fluorescence Excitation Spectra
370(2)
9.3.1.3.2 Fluorescence Spectra
372(2)
9.3.1.3.3 Site-Selective Fluorescence Spectra
374(1)
9.3.1.3.4 Assignment of Fluorescence
375(1)
9.3.1.3.5 Time-Resolved Fluorescence Spectra
376(3)
9.3.1.4 Summary
379(1)
References
380(3)
Chapter 9.3.2 Sequential Singlet Internal Conversion of IBu → 3Ag- → 1Bu- → 2Ag-LAg Ground) in All-Trans-Spirilloxanthin Revealed by Two-Dimensional Sub-5-fs Spectroscopy
383(8)
9.3.2.1 Introduction
383(2)
9.3.2.2 Experimental
385(1)
9.3.2.3 Results and Discussion
385(1)
9.3.2.3.1 Characterization of Femtosecond Time-Resolved Absorption Spectra: Identification of Sequential Internal Conversion
385(1)
9.3.2.3.1.1 Time-Resolved Absorption Spectra Near Zero Delay Time
385(1)
9.3.2.3.1.2 Time-Resolved Spectra with Positive Delay Times
386(1)
9.3.2.3.2 Analysis by SVD and Global-Fitting in the Framework of a Sequential Model
387(2)
9.3.2.3.3 Comparison with the Previous Results of Subpicosecond Time-Resolved Absorption Spectra
389(1)
References
390(1)
Chapter 9.3.3 Observation of Breather Exciton and Soliton in a Substituted Polythiophene with a Degenerate Ground State
391(8)
9.3.3.1 Introduction
391(1)
9.3.3.2 Experimental Descriptions
392(1)
9.3.3.3 Molecule Structure
392(1)
9.3.3.4 Quantum-Chemical Methodology
392(1)
9.3.3.5 Results and Discussion
393(1)
9.3.3.5.1 Electronic Relaxation and Molecular Vibration Dynamics
393(2)
9.3.3.5.2 Dynamics of Breather and Soliton
395(3)
9.3.3.6 Conclusions
398(1)
References
398(1)
Chapter 9.3.4 Ultrafast Electronic Relaxation and Vibrational Dynamics in a Polyacetylene Derivative
399(12)
9.3.4.1 Introduction
399(1)
9.3.4.2 Experimental
400(1)
9.3.4.2.1 Sample
400(1)
9.3.4.2.2 Ultrafast Spectroscopy
400(1)
9.3.4.3 Results and Discussion
400(1)
9.3.4.3.1 Delay Time Dependence of Difference Absorbance and Time-resolved Spectrum
400(3)
9.3.4.3.2 The Effect of the Electronic Transition Spectrum by Molecular Vibration
403(1)
9.3.4.3.3 Initial Phases of the Vibrational Modes Coupled to the Electronic Transition via Impulsive Excitation
404(2)
9.3.4.3.4 Vibrational-Energy Ladder Descending Process and Vibrational Phase Relaxation
406(1)
9.3.4.3.5 Electronic Phase Relaxation Obtained from the Data in the Negative Time Range
407(1)
9.3.4.4 Conclusions
408(1)
References
409(2)
Chapter 9.3.5 Ultrabroadband Time-Resolved Spectroscopy of Polymers
411(8)
9.3.5.1 Effect of Annealing on the Performance of P3HT: PCBM Solar Cells
411(3)
9.3.5.2 Conclusion and Perspectives
414(1)
References
415(4)
SECTION 9.4 2 D Topological Materials
Chapter 9.4.1 Ultrabroadband Time-Resolved Spectroscopy of Topological Insulators
419(14)
9.4.1.1 Introduction
419(1)
9.4.1.2 Broadband Time-Resolved Spectroscopy
420(1)
9.4.1.2.1 Development
420(2)
9.4.1.2.2 Femtosecond Light Sources
422(1)
9.4.1.2.2.1 Narrowband Optical Parametric Amplifier
422(1)
9.4.1.2.2.2 Broadband Optical Parametric Amplifier
422(1)
9.4.1.2.3 Pump-Probe Spectroscopy
423(1)
9.4.1.2.3.1 Fast-Scan Techniques
424(1)
9.4.1.2.3.2 Broadband Detection Techniques
424(1)
9.4.1.3 Ultrafast Dynamics in Novel Condensed Matter
424(1)
9.4.1.3.1 Spin-Valley Coupled Polarization in Monolayer MoS2
424(4)
9.4.1.4 Conclusion and Perspectives
428(1)
References
428(5)
Chapter 9.4.2 Phonon Dynamics in CuxBi2(x50, 0.1, and 0.125) and Bi2Se2 Crystals Studied Using Ultrafast Spectroscopy
433(8)
9.4.2.1 Introduction
433(2)
9.4.2.2 Experimental
435(1)
9.4.2.3 Results and Discussion
435(3)
9.4.2.4 Conclusion
438(1)
References
439(2)
Chapter 9.4.3 Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2
441(8)
9.4.3.1 Introduction
441(8)
References
447(2)
Chapter 9.4.4 Femtosecond Time-Evolution of Mid-Infrared Spectral Line Shapes of Dirac Fermions in Topological Insulators
449(1)
9.4.4.1 Introduction
449(1)
9.4.4.2 Experimental
449(1)
9.4.4.3 Results
450(3)
9.4.4.3.1 Ultra-Broadband MIR AR/R Spectra of FCA and SSTs in Topological Insulators
450(2)
9.4.4.3.2 Quantitative Analysis of the Ultra-Broadband MIR AR/R Spectra
452(1)
9.4.4.3.2.1 Ultrafast Time-Evolution of the ltra-Broadband MIR AR/R Spectra
453(1)
9.4.4.4 Discussion
453(4)
References
457(1)
SECTION 10 Conductors and Superconductors SECTION 10.1 Super Conductors
Chapter 10.1.1 Dichotomy of Photoinduced Quasiparticle on CuOz Planes of YB2Cu
457(6)
Directly Revealed by Femtosecond Polarization Spectroscopy
463(1)
10.1.1.1 Introduction
463(1)
10.1.1.2 Experiment
463(1)
10.1.1.3 Results and Discussion
464(3)
References
467(2)
Chapter 10.1.2 Ultrafast Dynamics and Phonon Softening in Fe1+ySe1-xTex Single Crystals
469(12)
10.1.2.1 Introduction
469(1)
10.1.2.2 Experiments
469(2)
10.1.2.3 Temperature-Dependent AR/R
471(3)
10.1.2.4 Electron-Optical Phonon Coupling Strength
474(1)
10.1.2.5 Acoustic Phonon Softening
475(3)
10.1.2.6 Summary
478(1)
References
478(3)
Chapter 10.1.3 Quasiparticle Dynamics in FeSe Superconductors Studied by Femtosecond Spectroscopy
481(6)
10.1.3.1 Introduction
481(1)
10.1.3.2 Experiments
481(1)
10.1.3.3 Results and Discussion
481(2)
10.1.3.4 Summary
483(1)
References
483(4)
SECTION 10.2 THz, MIR Spectroscopy of Materials
Chapter 10.2.1 Dirac Fermions Near the Dirac Point in Topological Insulators
487(8)
10.2.1.1 Introduction
487(1)
10.2.1.2 Results and Discussion
487(5)
10.2.1.3 Conclusion
492(1)
References
492(3)
Chapter 10.2.2 Helicity-Dependent Terahertz Emission Spectroscopy of Topological Insulator
495(16)
10.2.2.1 Introduction
495(1)
10.2.2.2 Experiments
495(1)
10.2.2.3 Results and Discussion
496(4)
10.2.2.4 Summary and Conclusions
500(1)
Appendix A Sample Preparation and Terahertz Emission Measurement
501(1)
Appendix B Time-Domain Fits for the Helicity-Dependent Terahertz Radiation at φ = 0° and 90°
502(1)
Appendix C Dependence of Circular
502(3)
Appendix D Time-Domain Decomposition and Recombination of the α-Dependent Terahertz Waveforms at φ = 90°
505(1)
Appendix E Estimation of the Terahertz-Emission Spectra for Dirac Fermions by Using Photoemission Dynamics from Time-Resolved ARPES Measurements
506(2)
Appendix F Helicity-Independent Terahertz Radiation from a <110>ZnTe Single Crystal
508(1)
References
508(3)
Chapter 10.2.3 Femtosecond Time-Evolution of Mid-Infrared Spectral Line Shapes of Dirac Fermions in Topological Insulators
511(10)
10.2.3.1 Results
511(3)
10.2.3.2 Discussion
514(3)
10.2.3.3 Methods
517(2)
References
519(2)
Chapter 10.2.4 Ultrafast Carrier Dynamics in Ge by Ultra-Broadband Mid-Infrared Probe Spectroscopy
521(16)
10.2.4.1 Experiments
522(1)
10.2.4.2 Results and Discussion
522(8)
10.2.4.3 Summary
530(1)
References
531(6)
SECTION 11 Chemical Reactions and Material Processing
SECTION 11.1 Chemical Reactions
Chapter 11.1.1 Transition State in a Prevented Proton Transfer Observed in Real Time
537(12)
11.1.1.1 Introduction
537(1)
11.1.1.2 Experimental
537(1)
11.1.1.3 Results and Discussion
538(1)
11.1.1.3.1 Investigation of Reaction Mechanisms of Proton Transfer (Theory)
538(1)
11.1.1.4 Direct Observation of Transition State (Methanol Solution of Indigodisulfonate Salt)
539(3)
11.1.1.5 Comparison between Experimental Results and Theoretical Results TD-B3LYP/6-311 ++G**//B3LYP/6311++G**
542(5)
11.1.1.6 Conclusion
547(2)
Supporting Information
547(1)
References
547(2)
Chapter 11.1.2 Environment-Dependent Ultrafast Photoisomerization Dynamics in AzoDye
549(10)
11.1.2.1 Introduction
549(1)
11.1.2.2 Experimental Section
549(2)
11.1.2.3 Results and Discussion
551(6)
11.1.2.4 Summary
557(1)
References
558(1)
Chapter 11.1.3 Direct Observation of Denitrogenation Process of 2,3-diazabicyclo [ 2.2.1] hept-2-ene (DBH) Derivatives, Using a Visible 5-fs Pulse Laser
559(8)
11.1.3.1 Introduction
559(1)
11.1.3.2 Experimental
560(1)
11.1.3.3 Results and Discussion
560(1)
11.1.3.3.1 Pump-Probe Experimental Results
560(2)
11.1.3.3.2 Spectrogram
562(1)
11.1.3.3.3 Denitrogenation Mechanism
563(1)
11.1.3.4 Conclusion
564(1)
References
564(3)
Chapter 11.1.4 Photo-Impulsive Reactions in the Electronic Ground State without Electronic Excitation: Non-Photo, Non-Thermal Chemical Reactions
567(10)
11.1.4.1 Introduction
567(1)
11.1.4.2 Experimental
567(1)
11.1.4.2.1 Few-Optical-Cycle Ultraviolet Pulses
567(1)
11.1.4.2.2 Few-Optical-Cycle Visible Pulses
568(1)
11.1.4.2.3 Sample Cell
568(1)
11.1.4.2.4 Pump-Probe Measurement
569(1)
11.1.4.2.5 Quantum Chemical Calculation
569(1)
11.1.4.3 Results
569(1)
11.1.4.3.1 Vibrational Dynamics in the Reaction under Few-Optical Cycle Ultraviolet Pulse Irradiation (See Figure 11.1.4.1a)
569(1)
11.1.4.3.2 Vibrational Dynamics in the Reaction under Few-Optical Cycle Visible Pulse Irradiation (See Figure 11.1.4.1c)
570(1)
11.1.4.3.3 Theoretical Vibrational Dynamics of the Photo- and Thermal Reactions
571(2)
11.1.4.4 Discussion
573(1)
11.1.4.4.1 Photochemically-Allowed Claisen Rearrangement of Allyl Phenyl Ether by Few-Optical-Cycle Ultraviolet Pulse Irradiation
573(1)
11.1.4.4.2 Thermally-Allowed Claisen Rearrangement of Allyl Phenyl Ether by Few-Optical-Cycle Visible Pulse Irradiation
573(1)
11.1.4.4.3 Non-Photo, Non-Thermal Chemical Reaction
574(1)
11.1.4.5 Conclusions
574(1)
References
575(2)
Chapter 11.1.5 The Reaction Mechanism of Claisen Rearrangement Obtained by Transition State Spectroscopy and Single Direct-Dynamics Trajectory
577(8)
11.1.5.1 Introduction
577(1)
11.1.5.2 Results and Discussions
578(1)
11.1.5.2.1 Transition State Spectroscopy of the Claisen Rearrangement of Allyl Vinyl Ether
578(2)
11.1.5.2.2 Single Direct-Dynamics Trajectory
580(2)
11.1.5.3 Experimental
582(1)
11.1.5.3.1 Visible 5-fs Laser System
582(1)
11.1.5.3.2 "The Reaction in the Electronic Ground State", Triggered by the Visible 5-fs Pulse
582(1)
11.1.5.4 Conclusions
583(2)
References
583(2)
Chapter 11.1.6 A New Reaction Mechanism of Claisen Rearrangement Induced by Few-Optical-Cycle Pulses: Demonstration of Nonthermal Chemistry by Femtosecond Vibrational Spectroscopy
585(16)
11.1.6.1 Introduction
585(1)
11.1.6.2 Experimental
586(1)
11.1.6.2.1 Visible Few-Optical-Cycle Pulses
586(1)
11.1.6.2.2 Ultraviolet Few-Optical-Cycle Pulses
586(1)
11.1.6.2.3 Sample Cell
586(1)
11.1.6.2.4 Pump-Probe Measurement
587(1)
11.1.6.2.5 Theoretical Calculation
587(1)
11.1.6.3 Results and Discussion
587(1)
11.1.6.3.1 Claisen Rearrangement of Allyl Vinyl Ether
587(4)
11.1.6.3.2 Claisen Rearrangement of Allyl Phenyl Ether
591(3)
11.1.6.3.3 "Nonphoto Nonthermal Claisen Rearrangement" and Thermal Claisen Rearrangement
594(2)
11.1.6.4 Conclusion
596(1)
References
596(5)
SECTION 11.2 Material Processing
Chapter 11.2.1 Magnetization Dynamics and the Mn3+ d-d Excitation of Hexagonal HoMnO3 Single Crystals Using Wavelength-Tunable Time-Resolved Femtosecond Spectroscopy
601(8)
11.2.1.1 Introduction
601(2)
11.2.1.2 Experiments
603(1)
11.2.1.3 Results and Discussion
603(4)
11.2.1.4 Summary
607(1)
References
607(2)
Chapter 11.2.2 Ultrafast Thermoelastic Dynamics of HoMn03 Single Crystals Derived from Femtosecond Optical Pump-Probe Spectroscopy
609(8)
11.2.2.1 Introduction
609(1)
11.2.2.2 Experiments
610(1)
11.2.2.3 Results and Discussion
610(1)
11.2.2.3.1 Temperature- and Wavelength-Dependent AR/R
610(1)
11.2.2.3.2 Attribution of the Negative Component in AR/R
611(2)
11.2.2.3.3 Attribution of the Oscillation Component in AR/R
613(3)
11.2.2.4 Conclusion
616(1)
References
616(1)
Chapter 11.2.3 Ultrafast Photoinduced Mechanical Strain in Epitaxial BiFe03 Thin Films
617(6)
11.2.3.1 Introduction
617(1)
11.2.3.2 Experimental
618(1)
11.2.3.3 Results and Discussion
618(3)
11.2.3.4 Conclusion
621(1)
References
622(1)
Chapter 11.2.4 Femtosecond Laser-Induced Formation of Wurtzite Phase ZnSe Nanoparticles in Air
623(6)
11.2.4.1 Introduction
623(1)
11.2.4.2 Experimental
623(1)
11.2.4.3 Results and Discussion
624(3)
11.2.4.4 Conclusion
627(1)
References
627(2)
Chapter 11.2.5 Controllable Subwavelength-Ripple and -Dot Structures on YBa2CuO3 Induced by Ultrashort Laser Pulses
629(8)
11.2.5.1 Introduction
629(1)
11.2.5.2 Experiments
629(1)
11.2.5.3 Results and Discussion
630(3)
11.2.5.4 Summary
633(1)
References
633(4)
SECTION 12 Photobiological Reactions
Chapter 12.1 Real-Time Vibrational Dynamics in Chlorophyll a Studied with a Few-Cycle Pulse Laser
637(14)
12.1.1 Introduction
637(2)
12.1.2 Materials and Methods
639(1)
12.1.3 Results and Discussion
640(1)
12.1.3.1 Stationary Absorption and Fluorescence Spectra and Time-Resolved Difference Absorption Spectrum
640(3)
12.1.3.2 Ultrafast Dynamics of Vibrational Modes
641(2)
12.1.4 Theory and Discussion
643(4)
12.1.5 Conclusions
647(4)
Supporting Material
647(1)
References
647(4)
Chapter 12.2 Time-Resolved Spectroscopy of Ultrafast Photoisomerization of Octopus Rhodopsin Under Photoexcitation
651(10)
12.2.1 Introduction
651(1)
12.2.2 Experimental Methods
652(7)
12.2.2.1 Femtosecond Spectroscopy Apparatus
652(1)
12.2.2.2 Octopus Rh
653(1)
12.2.3 Results and Discussion
653(1)
12.2.3.1 Electronic Dynamics
653(2)
12.2.3.2 Vibration Dynamics
655(4)
12.2.4 Conclusions
659(2)
References
659(2)
Chapter 12.3 Schiff Base Proton Acceptor Assists Photoisomerization of Retinal Chromophores in Bacteriorhodopsin
661
12.3.1 Introduction
661(1)
12.3.2 Materials and Methods
662
12.3.2.1 Chemicals Used in This Study
662(1)
12.3.2.2 Plasmid Constructions
662(1)
12.3.2.3 Primers Used for Mutant Constructions
663(1)
12.3.2.4 Protein Purification
663(1)
12.3.2.5 Flash-Laser-Induced Photocycle Measurement
663(1)
12.3.2.6 Fast-Scan Transient Absorption Spectroscopy
663(1)
12.3.2.7 Visible Broadband Sub-10-Fs Pulse
664(1)
12.3.2.8 Software Employed in This Study
664(1)
12.3.3 Results and Discussion
664(1)
12.3.3.1 Sequence Alignment of HwBR and Other BRs
664(1)
12.3.3.2 Protein Constructions, Expression, Purification, and Ultraviolet-Visible Maximum Absorbance of Wild-Type, D93N, and D104N
665(1)
12.3.3.3 Ground-State Photocycle of Wild-Type, D93N, and D104N
665(1)
12.3.3.4 Transient Absorption Spectroscopy of Wild-Type and Mutants of HwBR
665(2)
12.3.3.5 Global Fitting Using the Triple-Exponential Function
667(4)
12.3.3.6 Femtosecond 2D-CS
671(2)
12.3.3.7 Picosecond 2D-CS
673(1)
12.3.3.8 Transient Absorption Spectroscopy of Wild-Types of HwBR, HmBRI, and HmBRII
674(1)
12.3.3.9 Global Fitting Using the Triple-Exponential Function
675(1)
12.3.3.10 Femtosecond 2D-CS
676(1)
12.3.3.11 Picosecond 2D-CS
677(1)
12.3.4 Conclusions
678(1)
References
679
Takayoshi Kobayashi,

Titles: Professor Emeritus of The University of Tokyo, Chair professor of National Chiao-Tung University, Guest professors of Univ. of Electro-Communications and Tokyo University of Science, Professor Emeritus of The University of Tokyo

Research activities

For more than 35 years, research on the development of ultrafast lasers and on ultrafast spectroscopy. From about 7 years ago, the development of photothermal super-resolution microscope and its applications to biological and medical research. > 660 original papers in international journals and >300 review articles.

Awards:

2000-present: Fellow of the Optical Society of America

2005-present: Chair Professor, National Chiao-Tung University in Taiwan.

2011: Humboldt Award, Outstanding Research in the Development of Ultrashort Pulse Laser and Ultrafast Processes in Molecules

2013: Fellow of the Chemical Society of Japan

2015: Senior Member of the Optical Society of America (at present Optica)