Muutke küpsiste eelistusi

E-raamat: Utility-scale Wind Turbines and Wind Farms

Edited by (Tennessee Technological University, Fluid Mechanics Research Laboratory, USA), Edited by (University of Windsor, Turbulence & Energy Laboratory, Canada)
  • Formaat: PDF+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 26-Oct-2021
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781839531002
  • Formaat - PDF+DRM
  • Hind: 201,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 26-Oct-2021
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781839531002

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Wind power is a pillar of low emission energy systems. Designing more efficient wind turbines and farms, and increasing reliability and flexibility, is an area of intense research and development. In order to overcome the intermittent character of wind power, both the individual turbines and the wind farm as a whole must be considered.

Many recent advances have been achieved in multiple aspects of utility-scale wind power. This structured research review conveys recent progress, with chapters written by an international team of experts.

Organized into five parts, the book covers the aerodynamics of turbines and farms including layout; control techniques; environmental concerns including noise and bird and bat collisions; the intermittency issue including forecasting, storage and hybrid wind-PV plants; and offshore wind farms.

From the general principles of aerodynamics to detailed and systematic coverage of the latest developments, Utility-scale Wind Turbines and Wind Farms provides a convenient and up-to-date source of information for academic researchers and R&D professionals working in this field.



Wind power is a pillar of low emission energy systems. Many recent advances have been achieved in multiple aspects of utility-scale wind power. This structured review conveys recent progress involving aerodynamics, layout, control, environmental concerns, forecasting and intermittency, combination with PV and offshore farms.

List of figures
xv
List of tables
xxiii
About the editors xxv
Preface xxvii
Acknowledgment xxix
1 The Current Status of Wind Power
1(18)
Michael R. Hackler
Ahmad Vasel-Be-Hagh
David S.-K. Ting
1.1 Introduction
1(1)
1.2 History of wind power harvesting
1(2)
1.3 Current installed wind capacity
3(1)
1.4 Current status of rotors
4(2)
1.4.1 Rotor shape modification through bio-mimicry
4(1)
1.4.2 Dual rotor Design
4(1)
1.4.3 Addition of complimentary components to wind turbines
5(1)
1.4.4 Rotor blade life and post-life management
5(1)
1.5 Current status of towers
6(1)
1.6 Current status of offshore foundations
7(1)
1.7 Current status of drive trains
8(1)
1.8 Advances in utility-scale wind turbines and wind farms
9(2)
1.8.1 Aerodynamics of wind turbines and wind farms
9(1)
1.8.2 Field data collection and control of wind turbines and wind farms
9(1)
1.8.3 Addressing the environmental issues
10(1)
1.8.4 Addressing the intermittency issue
10(1)
1.8.5 Offshore wind
11(1)
References
11(8)
PART I Aerodynamics
2 Advances in the aerodynamics of horizontal axis wind turbines
19(20)
Oluseyi O. Ajayi
Logan Unser
Joseph O. Ojo
2.1 Introduction
19(2)
2.2 Wind turbine's blade technology development
21(1)
2.3 Progress in the aerodynamics of HAWT rotor blades
22(7)
2.4 Augmenting horizontal axis wind turbines with diffusers
29(2)
2.5 Dual-rotor turbines
31(2)
2.6 Conclusion
33(1)
References
33(6)
3 Scaling utility-scale wind turbines
39(10)
Logan Unser
Ahmad Vasel-Be-Hagh
3.1 Why test scale Turbines?
39(1)
3.2 How to properly scale wind turbines for wind tunnel Testing?
40(3)
3.3 Practical steps for implementation in Python
43(1)
3.4 Blade element theory when applied to wind turbine scaling
44(1)
3.5 Blockage corrections for model Turbines
45(1)
Summary
45(1)
References
46(3)
4 Advances in aerodynamics of wind farms
49(38)
Tanmoy Chatterjee
Yulia T Peet
4.1 Introduction
49(1)
4.2 Length scales in wind farms
50(2)
4.3 State-of-the-art numerics for farm modeling
52(6)
4.3.1 Large eddy simulation
52(3)
4.3.1.1 Near-wall model
55(1)
4.3.2 Wind turbine model---actuator line and actuator disk
56(2)
4.4 Analytical models
58(8)
4.4.1 Frandsen-Calaf theory
58(2)
4.4.2 Large eddy simulation of infinite wind farms
60(1)
4.4.2.1 Turbulent statistics
61(2)
4.4.2.2 Spectra
63(1)
4.4.3 Two-scale momentum theory
64(2)
4.5 Interaction of large scale turbulence in wind farms
66(1)
4.6 Wake-deficit models
67(4)
4.6.1 Wake superposition
67(3)
4.6.2 Curled wake model
70(1)
4.7 Induction
71(4)
4.7.1 Aerodynamic roughness in wind farms
73(2)
4.8 Wind farms in complex terrain
75(2)
4.9 Reducing farm-level aerodynamic interaction
77(2)
4.9.1 Modification of wind turbines
77(1)
4.9.2 Modification of farm layout: multiscale wind farms
77(2)
4.9.3 Modification of farm land: windbreak models
79(1)
4.10 Wind farm control
79(1)
4.10.1 Wake steering
80(1)
4.10.2 Dynamic induction control
80(1)
4.11 Conclusion
80(2)
References
82(5)
5 Wind farm layout optimization
87(18)
Hua Li
Francisco Haces-Fernandez
Ying Chen
5.1 Introduction to wind farm layout optimization
87(3)
5.1.1 Wind farm layout change trend
87(2)
5.1.2 Wake models and cost models
89(1)
5.2 Different wind farm layout optimization methods
90(4)
5.2.1 Genetic algorithm
90(1)
5.2.2 Particle swarm optimization method
91(1)
5.2.3 Other algorithms used in wind farm layout optimization
92(1)
5.2.4 Wind farm layout optimization with Geographic Information Systems
93(1)
5.3 Single objective and multiple objectives wind farm layout optimization
94(1)
5.4 Case study
95(1)
5.5 Discussion and future trend
95(3)
References
98(7)
PART II Control
6 Analyzing data obtained via wind farm supervisory control and data acquisition
105(34)
Jay Lee
Xiaodong Jia
Vibhor Pandhare
Marcella Miller
6.1 Introduction
105(1)
6.2 Wind farm operation and maintenance with SCADA data and CMS data
106(13)
6.2.1 Reliability assessment and maintenance strategies
106(2)
6.2.2 Condition monitoring and prognosis with SCADA and CMS data
108(7)
6.2.3 Performance monitoring with SCADA data
115(1)
6.2.4 Wind speed/power prediction
116(2)
6.2.5 Predictive maintenance planning
118(1)
6.3 A unified framework for cyber-physical wind farms
119(3)
6.4 Case studies
122(11)
6.4.1 SCADA-based power curve monitoring
122(4)
6.4.2 Condition monitoring of drivetrain system
126(4)
6.4.3 Intelligent wind field operation and maintenance system
130(3)
6.5 Summary and future perspectives
133(1)
References
134(5)
7 Innovative control strategies for wind turbines
139(44)
Yin Minghui
Chen Zaiyu
Zhou Lianjun
Xu Yan
Zou Yun
7.1 Wind turbine model for MPPT design
139(4)
7.1.1 Wind turbine rotor aerodynamics
140(1)
7.1.2 Wind turbine mechanical dynamics
141(1)
7.1.3 MPPT
141(1)
7.1.3.1 OT control
142(1)
7.1.3.2 TSR control
143(1)
7.2 MPPT under turbulence
143(9)
7.2.1 Turbulence characteristics
144(1)
7.2.1.1 Mean wind speed
144(1)
7.2.1.2 Turbulence intensity
144(1)
7.2.1.3 Integral length scale
145(1)
7.2.1.4 Power spectral density
145(1)
7.2.1.5 Turbulence frequency
146(1)
7.2.2 Turbine tracking loss
146(1)
7.2.3 Turbine tracking invalidity
147(5)
7.3 Effects of turbulence on MPPT performance
152(7)
7.3.1 Mean wind speed
152(1)
7.3.2 Turbulence intensity
153(1)
7.3.3 Turbulence frequency
153(1)
7.3.3.1 Direct effects of turbulence frequency
154(1)
7.3.3.2 Indirect effects of turbulence frequency
154(5)
7.4 MPPT reference input modification to increase wind energy extraction
159(7)
7.4.1 Reference input modification analysis
160(2)
7.4.2 DTG
162(2)
7.4.3 Reduction of tracking range
164(2)
7.5 MPPT using ETR
166(11)
7.5.1 ETR
166(3)
7.5.2 ETR estimation based on wind energy distribution
169(2)
7.5.3 Simulation studies and experimental validation
171(1)
7.5.3.1 FAST simulation results
172(1)
7.5.3.2 WTS experimental results
173(4)
References
177(6)
8 Recent advances in vibration control for wind turbines under multiple hazards
183(30)
Aly Mousaad Aly
Milad Rezaee
8.1 Introduction
183(2)
8.2 Wind turbines
185(2)
8.3 Structural dynamics
187(4)
8.4 Structural control
191(5)
8.4.1 Passive control
192(1)
8.4.2 Active control
193(2)
8.4.3 Hybrid control
195(1)
8.4.4 Semi-active control
195(1)
8.4.5 Variable-orifice dampers
195(1)
8.4.6 Controllable fluid damper
196(1)
8.5 MR dampers
196(4)
8.5.1 Bingham model
197(1)
8.5.2 Bouc-Wen model
197(1)
8.5.3 Modified Bouc-Wen model
198(1)
8.5.4 Control algorithms
199(1)
8.6 Controller design
200(1)
8.7 Advanced control theory to accelerate the optimal tuning of smart structures
201(2)
8.8 Summary
203(2)
Acknowledgements
205(1)
References
205(8)
PART III Environmental Concerns
9 Wind farm noise propagation and viable noise reduction strategies
213(14)
Aki Gronman
9.1 Wind turbine noise sources
213(1)
9.2 Human response to wind turbine noise and noise characteristics
214(2)
9.3 Atmospheric conditions and wind turbine noise
216(1)
9.4 Wind turbine noise prediction
217(2)
9.4.1 Semiempirical noise prediction methods
217(1)
9.4.2 Computational aeroacoustics
217(1)
9.4.3 Noise propagation and immission modeling
218(1)
9.5 Methods to reduce noise-related problems
219(5)
9.5.1 Wind farm operation
219(1)
9.5.2 Wind farm design
220(1)
9.5.3 Wind turbine aerodynamics
221(1)
9.5.3.1 Airfoil self-noise
221(2)
9.5.3.2 Incoming turbulence noise
223(1)
9.5.3.3 Noise due to the interaction between the tower and the blades
223(1)
9.6 Summary
224(1)
References
224(3)
10 Bird and bat collisions at wind farms
227(26)
Golrokh Mirzaei
Mohsin M Jamali
10.1 Introduction
227(2)
10.2 Monitoring activities
229(10)
10.2.1 Onshore monitoring
229(1)
10.2.1.1 Acoustic monitoring
229(1)
10.2.1.1.1 Acoustic detectors
230(1)
10.2.1.1.2 Feature extraction
231(3)
10.2.1.1.3 Classification
234(2)
10.2.1.2 Thermal imaging
236(1)
10.2.1.2.1 Detection and tracking
237(1)
10.2.1.3 Radar technology
238(1)
10.2.1.3.1 Radars in avian studies
238(1)
10.2.2 Offshore monitoring
239(1)
10.3 Impact of bird collision
239(3)
10.4 Mitigation
242(3)
10.5 Conclusions
245(1)
Acknowledgments
246(1)
References
246(7)
PART IV The Intermittency Issue
11 Overview of state-of-the-art of wind power forecasting
253(16)
Rongfu Sun
Mingjian Cui
Haixiang Xu
Qing He
Xinnan Zhou
11.1 Introduction
253(1)
11.2 Technical routine of wind power forecasting
254(1)
11.3 Numerical weather prediction
254(1)
11.4 Wind power conversion model
255(6)
11.4.1 Deterministic forecast
255(1)
11.4.1.1 Physical forecasting method
256(1)
11.4.1.2 Statistical forecasting method
257(2)
11.4.1.3 Ensemble forecasting method
259(1)
11.4.2 Ramping event forecast
259(1)
11.4.3 Probabilistic forecast
260(1)
11.5 Predictive performance evaluation
261(4)
11.5.1 Deterministic forecast evaluation
261(1)
11.5.1.1 Vertical error evaluation
261(1)
11.5.1.2 Horizontal error evaluation
262(1)
11.5.2 Event forecast evaluation
262(2)
11.5.3 Probabilistic forecast evaluation
264(1)
11.5.3.1 Prediction intervals coverage probability (PICP)
264(1)
11.5.3.2 Prediction intervals relative width (PIRW)
264(1)
11.5.3.3 Daily accumulated deviation index (DADI)
265(1)
11.6 Conclusion and future work
265(1)
References
266(3)
12 Storage-integrated wind farms
269(28)
Javad Khazaei
Dinh Hoa Nguyen
Arash Asrari
Abstract
269(1)
12.1 Introduction
269(2)
12.2 Modeling of storage-integrated wind farms
271(8)
12.2.1 Modeling of wind generator and drive train
271(3)
12.2.2 Modeling of DFIG's transmission system
274(1)
12.2.3 Modeling of controllers for the wind turbine
274(1)
12.2.3.1 RSC control and dynamics
274(2)
12.2.3.2 Grid-side converter dynamics
276(1)
12.2.4 Modeling of battery energy storage unit
276(1)
12.2.4.1 AC-side dynamics
277(1)
12.2.4.2 Modeling storage controllers
277(1)
12.2.4.3 Phase-locked loop (PLL)
278(1)
12.2.4.4 Integration of BESS and wind turbine at PCC
279(1)
12.3 Stability analysis
279(3)
12.3.1 Sensitivity analysis
281(1)
12.4 Distributed control design for storage-integrated wind farms
282(7)
12.4.1 Control objectives
283(1)
12.4.2 Simplified model of storage-integrated wind turbines for secondary control design
284(1)
12.4.2.1 Wind turbine's simplified model
284(1)
12.4.2.2 Simplified model of BESSs
285(1)
12.4.3 Graph theory
285(1)
12.4.4 Control design without communication delays
286(2)
12.4.5 Control design with communication delays
288(1)
12.5 Case studies
289(3)
12.5.1 Ancillary services without communication delays
290(1)
12.5.2 Ancillary services with communication delays
290(2)
12.6 Conclusion
292(1)
References
293(4)
13 Current status of research on the design of hybrid wind and solar plants
297(32)
Piyali Ganguly
Prof Akhtar Kalam
Profaladin Zayegh
Abstract
297(1)
13.1 Introduction
297(2)
13.1.1 Grid-connected systems
298(1)
13.1.2 Standalone RES systems
299(1)
13.2 Hybrid Renewable Energy Systems (HRES)
299(2)
13.3 HRES comprising of Solar/Wind and storage System components
301(2)
13.3.1 Solar Energy
301(1)
13.3.2 Wind Energy
302(1)
13.3.3 Energy storage Systems used in standalone HRES
302(1)
13.3.3.1 Batteries
303(1)
13.3.3.2 Fuel cells
303(1)
13.4 Optimization techniques for the components of HRES
303(10)
13.4.1 Criteria for hybrid solar-wind system optimization
303(2)
13.4.2 Methodologies for optimum sizing for the components of HRES
305(8)
13.5 Case study
313(3)
13.5.1 Proposed system
313(1)
13.5.2 Electrical Load
314(1)
13.5.3 Solar and wind resources
314(2)
13.5.4 Results and discussions
316(1)
13.6 Conclusion
316(4)
References
320(9)
PART V Offshore Wind
14 Status of offshore wind farms in Europe: the case study of Galicia
329(12)
Laura Castro-Santos
Almudena Filgueira-Vizoso
14.1 Contextualization
329(2)
14.2 Offshore wind
331(2)
14.3 Present and future of offshore wind in Galicia
333(4)
14.4 Conclusions
337(1)
References
338(3)
Index 341
Ahmad Vasel-Be-Hagh is an assistant professor of Mechanical Engineering and the founder of the Fluid Mechanics Research Laboratory at Tennessee Technological University, USA. His expertise is in thermal-fluid sciences and their applications to a wide range of engineering areas, including wind turbines and wind farms. He has published his research findings in more than twenty-five journal articles and chapters. He has edited eight books, proceedings, and special issues.



David S-K. Ting is a professor in Mechanical, Automotive and Materials Engineering and the founder of the Turbulence & Energy Laboratory (www.turbulenceandenergylab.org) at University of Windsor, Canada. To date, he has co/supervised over eighty graduate students primarily in the energy and turbulence areas and co-authored more than one hundred and forty related journal papers. He has also published four textbooks and co-edited ten volumes.