Muutke küpsiste eelistusi

E-raamat: 5G Radio Access Network Architecture - The Dark Side of 5G: The Dark Side of 5G [Wiley Online]

Edited by
  • Formaat: 448 pages
  • Sari: IEEE Press
  • Ilmumisaeg: 24-Dec-2020
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 1119550920
  • ISBN-13: 9781119550921
  • Wiley Online
  • Hind: 152,20 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 448 pages
  • Sari: IEEE Press
  • Ilmumisaeg: 24-Dec-2020
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 1119550920
  • ISBN-13: 9781119550921
Discover how the NG-RAN architecture is, and isn't, ready for the challenges introduced by 5G

5G Radio Access Network Architecture: The Dark Side of 5G explores foundational and advanced topics in Radio Access Network (RAN) architecture and why a re-thinking of that architecture is necessary to support new 5G requirements. The distinguished engineer and editor Sasha Sirotkin has included numerous works written by industry insiders with state of the art research at their disposal. The book explains the relevant standards and technologies from an academic perspective, but also explains why particular standards decisions were made and how a variety of NG-RAN architecture options could be deployed in real-life networks.

All major standards and technologies associated with the NG-RAN architecture are discussed in this book, including 3GPP, O-RAN, Small Cell Forum, IEEE, and IETF. Readers will learn about how a re-design of the RAN architecture would ensure that 5G networks can deliver their promised throughput and low latency KPIs consistently and sustainably.

The book is structured as follows:





An overview of the market drivers of the NG-RAN architecture, like spectrum models, 5G-relevant regulatory considerations, and 5G radio interface technical requirements An overview of the 5G System, from the core network, to the RAN, to the radio interface protocols and physical layer, with emphasis on how these are different compared to 4G Release-15 RAN architectures defined in 3GPP, O-RAN, and Small Cell Forum RAN architecture evolution in Release-16 and Release-17 Enabling technologies, like virtualization, open source technologies, multi-access edge (MEC) computing, and operations, administration, and management (OAM) NG-RAN deployment considerations, objectives, and challenges, like costs, spectrum and radio propagation considerations, and coverage

Perfect for network designers and operators who require a solid understanding of the NG-RAN architecture, 5G Radio Access Network Architecture also belongs on the bookshelves of network engineers who aim to increase their understanding of the standards and technologies relevant to the NG-RAN architecture.
Preface xv
Acknowledgments xvii
List of Contributors
xix
Acronyms and Abbreviations xxi
1 Introduction
1(4)
2 Market Drivers
5(32)
Reza Arefi
Sasha Sirotkin
2.1 Introduction
5(2)
2.2 Key Ideas
7(2)
2.3 Spectrum
9(5)
2.3.1 Spectrum Needs
9(3)
2.3.2 Target Spectrum
12(1)
2.3.3 Spectrum Implications
13(1)
2.4 New Spectrum Models
14(4)
2.4.1 New Ways of Sharing Spectrum
15(2)
2.4.2 Localized Licensing
17(1)
2.5 Regulations Facilitating 5G Applications
18(1)
2.6 Network Deployment Models
19(1)
2.7 Technical Requirements of 5G Radio Interfaces
20(3)
2.8 Business Drivers
23(2)
2.9 Role of Standards
25(4)
2.10 Role of Open Source
29(2)
2.11 Competition
31(1)
2.12 Challenges
32(2)
2.13 Summary
34(3)
References
35(2)
3 5G System Overview
37(86)
3.1 Introduction
37(1)
3.2 5G Core Network
37(22)
Sebastian Speicher
3.2.1 Introduction
37(2)
3.2.2 Service-Based Architecture
39(1)
3.2.2.1 Fostering Functional Reuse
39(2)
3.2.2.2 Overview of 5GC Control-Plane Functions
41(2)
3.2.3 Control-User Plane Separation (CUPS)
43(1)
3.2.4 Common Access-Agnostic Core Network
44(2)
3.2.5 Enablers for Concurrent and Efficient Access to Local and Centralized Services
46(1)
3.2.5.1 Overview
46(1)
3.2.5.2 Single PDU Session-Based Access to Local Services
47(1)
3.2.5.3 Multiple PDU Session-Based Access to Local Services
48(2)
3.2.6 Network Slicing
50(3)
3.2.7 Private Networks
53(1)
3.2.7.1 Overview
53(1)
3.2.7.2 Stand-Alone Non-public Networks
54(1)
3.2.7.3 Public-Network-Integrated Non-public Network
55(2)
References
57(2)
3.3 NG Radio Access Network
59(21)
Sasha Sirotkin
3.3.1 Introduction
59(3)
3.3.2 Network Protocol Stacks
62(1)
3.3.2.1 Control-Plane Protocol Stack
62(1)
3.3.2.2 User-Plane Protocol Stack
62(1)
3.3.2.3 Standards
63(1)
3.3.3 NG Interface
63(1)
3.3.3.1 NG-C Interface
64(5)
3.3.3.2 NG-U Interface
69(1)
3.3.4 Xn Interface
70(1)
3.3.4.1 Xn Control Plane (Xn-C) Interface
70(5)
3.3.4.2 Xn User Plane (Xn-U) Interface
75(1)
3.3.5 Additional NG-RAN Features
76(1)
3.3.5.1 RAN Sharing
76(1)
3.3.5.2 Slicing
77(1)
3.3.5.3 Virtualization
78(1)
3.3.5.4 Non-3GPP Access
78(1)
References
79(1)
3.4 NR Protocol Stack
80(19)
Sudeep Palat
3.4.1 Introduction
80(1)
3.4.2 NG-RAN Architecture
81(1)
3.4.3 NR User Plane
81(5)
3.4.4 Supporting QoS with 5GC
86(2)
3.4.5 NR Control Plane
88(1)
3.4.5.1 RRC States
88(1)
3.4.5.2 RRC Procedures and Functions
89(8)
3.4.6 Summary
97(1)
References
98(1)
3.5 NR Physical Layer
99(24)
Alexei Davydov
3.5.1 Introduction
99(1)
3.5.2 Waveform and Numerology
100(1)
3.5.3 Frame Structure
101(3)
3.5.4 Synchronization and Initial Access
104(1)
3.5.4.1 Downlink Synchronization Signals
104(2)
3.5.4.2 Random Access Channel
106(1)
3.5.5 Downlink Control Channel
107(5)
3.5.6 Uplink Control Channel J09
3.5.7 Reference Signals
112(1)
3.5.7.1 CSI-RS
112(2)
3.5.7.2 DM-RS
114(1)
3.5.7.3 PT-RS
115(1)
3.5.7.4 SRS
116(1)
3.5.8 Beam Management
116(2)
3.5.9 Channel Coding and Modulation
118(3)
3.5.10 Co-Existence with LTE, Forward Compatibility and Uplink Coverage Enhancement
121(1)
References
122(1)
4 NG-RAN Architecture
123(112)
Colby Harper
Sasha Sirotkin
4.1 Introduction
123(17)
4.1.1 Monolithic gNB Architecture
124(1)
4.1.2 Common Public Radio Interface (CPRI)
125(4)
4.1.3 Antenna Interface
129(1)
4.1.3.1 Before 5G: Where We Have Been
130(1)
4.1.3.2 New 5G Era: Where We Are
131(1)
4.1.3.3 Release-17 and Beyond: Where We Are Going
132(1)
4.1.4 Gnb Functional Split(s)
133(5)
4.1.5 Conclusions
138(1)
4.1.6 Further Reading
138(1)
References
138(2)
4.2 High-Level gNB-CU/DU Split
140(16)
4.2.1 Key Ideas
140(1)
4.2.2 Market Drivers
141(2)
4.2.3 Functional Description
143(1)
4.2.3.1 Fl Control-Plane Protocol
144(10)
4.2.3.2 User-Plane Protocol
154(1)
4.2.3.3 OAM Aspects
154(1)
4.2.4 Further Reading
154(1)
References
155(1)
4.3 Multi-Radio Dual Connectivity
156(20)
Sergio Parolari
4.3.1 Key Ideas
157(1)
4.3.2 MR-DC Options
157(1)
4.3.3 Market Drivers
158(2)
4.3.4 Functional Description
160(1)
4.3.4.1 Control Plane
160(4)
4.3.4.2 User Plane
164(5)
4.3.4.3 Procedures
169(5)
4.3.5 Further Reading
174(1)
References
175(1)
4.4 Control-User Plane Separation
176(15)
Feng Yang
4.4.1 Key Ideas
176(1)
4.4.2 Market Drivers
177(2)
4.4.3 Functional Description
179(1)
4.4.3.1 Control Plane
180(7)
4.4.3.2 OAM Aspects
187(1)
4.4.3.3 Relation to SDN
188(1)
4.4.3.4 Relation to 5GC
188(1)
4.4.4 Further Reading
189(1)
References
190(1)
4.5 Lower-Layer Split
191(22)
4.5.1 Key Ideas
191(1)
4.5.2 Market Drivers
192(2)
4.5.3 Functional Split
194(1)
4.5.3.1 Fronthaul Bandwidth Requirements
195(1)
4.5.3.2 Low-Level Functional Split Details
196(2)
4.5.3.3 Latency Management
198(2)
4.5.4 Fronthaul Interface
200(1)
4.5.4.1 Messages
201(6)
4.5.4.2 Scheduling Procedure
207(2)
4.5.4.3 Beamforming Methods
209(1)
4.5.5 Fronthaul Timing Synchronization
209(1)
4.5.6 Operation, Administration and Maintenance (OAM)
210(1)
4.5.7 Further Reading
211(1)
References
212(1)
4.6 Small Cells
213(20)
Clare Somerville
4.6.1 Key Ideas
213(1)
4.6.2 Market Drivers
214(1)
4.6.3 Barriers and Solutions
215(1)
4.6.3.1 Site Locations
215(1)
4.6.3.2 Scaling Up Deployment
215(1)
4.6.3.3 Backhaul
216(1)
4.6.3.4 Edge Compute
216(1)
4.6.4 Small Cell Variants
216(1)
4.6.4.1 Disaggregation Architectures
216(2)
4.6.4.2 Platform Architectures
218(2)
4.6.4.3 Operating Frequency Impacts on Architecture
220(1)
4.6.4.4 Operational Models
221(1)
4.6.5 Key Interfaces for Small Cells
222(1)
4.6.5.1 FAPI
222(4)
4.6.5.2 Nfapi
226(2)
4.6.5.3 Management Plane
228(1)
4.6.6 Worked Examples
229(1)
4.6.6.1 Indoor Enterprise Example
229(1)
4.6.6.2 Outdoor Urban Example
230(1)
4.6.6.3 Private Network Example
231(1)
4.6.7 Further Reading
232(1)
References
232(1)
4.7 Summary
233(2)
5 NG-RAN Evolution
235(42)
5.1 Introduction
235(1)
5.2 Wireless Relaying in 5G
235(22)
Georg Hampel
5.2.1 Key Ideas
236(1)
5.2.2 Market Drivers
237(2)
5.2.3 Functional Description
239(1)
5.2.3.1 IAB Architecture
239(3)
5.2.3.2 Backhaul Transport and QoS
242(5)
5.2.3.3 Resource Coordination
247(3)
5.2.3.4 Plug-and-Play Network Integration
250(5)
5.2.4 Outlook
255(1)
References
255(2)
5.3 Non-terrestrial Networks
257(20)
Leszek Raschkowski
Eiko Seidel
Nicolas Chuberre
Stefano Cioni
Thibault Deleu
Thomas Heyn
5.3.1 Key Ideas
258(2)
5.3.2 Market Drivers
260(1)
5.3.3 NTN Based NG-RAN Architecture
261(1)
5.3.3.1 Access Network with Transparent NTN Payload
261(1)
5.3.3.2 Access Network with Regenerative NTN Payload
262(1)
5.3.3.3 Transport network based on NTN
262(1)
5.3.4 NTN radio protocol
262(2)
5.3.4.1 Scheduling and Link Adaptation
264(1)
5.3.4.2 NR Layer 2 Enhancements for NTN
264(1)
5.3.4.3 NR Control-Plane Procedure Adaptations for NTN
265(1)
5.3.4.4 NR Mobility within NTN
266(1)
5.3.5 NR Physical Layer Adaptations for NTN
267(1)
5.3.5.1 Timing and Frequency Acquisition and Tracking
267(1)
5.3.5.2 HARQ
268(3)
5.3.5.3 Timing Advance (TA)
271(1)
5.3.5.4 Physical Layer Control Loops
272(1)
5.3.6 NTN Channel Model
272(2)
5.3.7 Outlook
274(1)
References
274(3)
6 Enabling Technologies
277(102)
6.1 Introduction
277(1)
6.2 Virtualization
277(17)
Sridhar Rajagopal
6.2.1 Key Ideas
278(1)
6.2.2 Market Drivers
279(1)
6.2.3 Architecture Evolution Toward Virtualization
280(1)
6.2.4 Containers and Microservices
280(4)
6.2.5 NFV Evolution
284(1)
6.2.6 RAN Virtualization Platform
285(1)
6.2.6.1 Gnb-DU and gNB-CU Virtualization
286(2)
6.2.6.2 Standardization of Orchestration and Cloudification in O-RAN
288(1)
6.2.7 Virtualization Challenges
289(1)
6.2.7.1 Accelerator Integration
289(1)
6.2.7.2 Timing and Synchronization
290(1)
6.2.7.3 RAN Scaling with Workload
290(1)
6.2.7 A Inter-Process Communication
291(1)
6.2.7.5 Virtualization Overhead
291(1)
6.2.7.6 SCTP/GTP Interface Support
291(1)
6.2.7.7 High Availability
292(1)
6.2.7.8 Power Consumption
292(1)
6.2.7.9 Distributed Cloud Deployments for RAN Nodes
292(1)
6.2.8 Further Reading
293(1)
References
293(1)
6.3 Open Source
294(9)
Sasha Sirotkin
6.3.1 Key Ideas
295(1)
6.3.2 Market Drivers
296(1)
6.3.3 Open Source License
296(2)
6.3.4 Software-Defined Radio
298(1)
6.3.5 Open Source RAN Projects
299(1)
6.3.5.1 Srslte
299(1)
6.3.5.2 OpenLTE
300(1)
6.3.5.3 OpenBTS
300(1)
6.3.5.4 Open Air Interface
300(1)
6.3.5.5 TIP
301(1)
6.3.5.6 O-RAN
301(1)
6.3.6 Surnmary
302(1)
References
302(1)
6.4 Multi-Access Edge Computing
303(23)
Miltiadis Filippou
Dario Sabelta
6.4.1 Key Ideas
304(1)
6.4.2 Market Drivers
304(1)
6.4.3 MEC Standard
305(1)
6.4.3.1 ETSI MEC System Architecture
305(3)
6.4.3.2 ETSI MEC APIs
308(1)
6.4.3.3 Location API
308(2)
6.4.4 ETSI MEC Deployment in 3GPP 5G Systems
310(1)
6.4.4.1 MEC Deployment in a 5G Network
311(2)
6.4.5 Inter-MEC System Communication
313(2)
6.4.5.1 Possible Implementation
315(1)
6.4.6 Flexible MEC Service Consumption
316(1)
6.4.6.1 Edge Host Zoning in Multi-Vendor Environments
316(5)
6.4.7 High Mobility Automotive Scenarios
321(1)
6.4.7.1 MEC-Supported Cooperative Information
321(2)
6.4.8 Further Reading
323(1)
References
323(3)
6.5 Operations, Administration, and Management
326(20)
Vladimir Yanover
6.5.1 Introduction
326(1)
6.5.2 Key Ideas
326(1)
6.5.3 Service-Based Management Architecture
327(1)
6.5.3.1 Examples of Management Services
328(1)
6.5.3.2 Management Service Exposure
329(1)
6.5.4 NG-RAN and 5GC Information Models
330(1)
6.5.5 Performance Management
330(2)
6.5.6 Management of Split NG-RAN
332(1)
6.5.6.1 Background
332(1)
6.5.6.2 Information Object Classes
332(1)
6.5.7 O-RAN Alliance Management Architecture
333(1)
6.5.8 Management of Network Slicing
334(1)
6.5.8.1 Basic Concepts of Slicing Management
334(2)
6.5.8.2 Support of Slicing Management in RAN Provisioning Service
336(1)
6.5.8.3 Configuration and LCM of NSSI and NSI
337(1)
6.5.8.4 NSI and NSSI Information Models (NRMs)
338(1)
6.5.9 SON in 5G
338(1)
6.5.9.1 SON Evolution
338(1)
6.5.9.2 "Legacy" SON Use Cases
339(1)
6.5.9.3 Multi-Domain SON with E2E Optimization
340(2)
6.5.9.4 SON Enablers in 5G System
342(1)
6.5.9.5 Distributed SON
342(1)
6.5.9.6 Hybrid SON
343(1)
6.5.10 Further Reading
343(2)
References
345(1)
6.6 Transport Network
346(33)
Yaakov (J.) Stein
Yuri Gittik
Ron Insler
6.6.1 Key Ideas
346(1)
6.6.2 Market Drivers
347(2)
6.6.3 Denning the Problem
349(1)
6.6.4 The Physical Layer
350(1)
6.6.4.1 Achieving the Required Data Rates
351(1)
6.6.4.2 Achieving the Required Latencies
352(3)
6.6.4.3 Achieving the Required Reliability
355(2)
6.6.4.4 Frequency and Time Synchronization
357(3)
6.6.4.5 Energy Efficiency
360(1)
6.6.5 Higher Layers
360(2)
6.6.5.1 Xhaul Network Topology
362(1)
6.6.5.2 Transport Protocols
363(3)
6.6.5.3 Protocol Stacks for User Traffic
366(1)
6.6.5.4 Technology Comparison
367(7)
6.6.6 Conclusions
374(1)
References
374(5)
7 NG-RAN Deployment Considerations
379(16)
Andreas Neubacher
Vishwanath Ramamurthi
7.1 Introduction
379(2)
7.2 Key Ideas
381(1)
7.3 Deployment Objectives and Challenges
381(6)
7.3.1 Where to Provide Coverage
381(2)
7.3.2 Network Capacity and Compute Resource Planning
383(1)
7.3.2.1 Air Interface Capacity
383(1)
7.3.2.2 Compute Resources for Edge Computing Services
384(1)
7.3.2.3 Reliability Considerations
385(1)
7.3.3 Service Fulfillment Criteria
386(1)
7.4 Deployment Considerations
387(8)
7.4.1 Deployment Cost
387(1)
7.4.2 Spectrum and Radio Propagation Considerations
388(2)
7.4.3 5G Frequency Ranges
390(1)
7.4.4 Transport Considerations
391(2)
7.4.5 Baseband Pooling
393(1)
7.4.6 Choice of a NG-RAN Split Architecture
394(1)
7.4.6.1 Sub-6 GHz Case
394(1)
7.4.6.2 High-Band (mmWave) Case
394(1)
7.5 Conclusions
395(1)
References 395(2)
Index 397
SASHA SIROTKIN is a senior engineer with 20 years of experience in telecommunications, international standardization, IP, machine learning, real-time systems, and open source technologies. He obtained MSc and BSc degrees in computer science and physics from Tel-Aviv University. His primary areas of interest are 4G/LTE and 5G/NR Radio Access Network architecture, as well as licensed and unlicensed spectrum integration and co-existence.