Muutke küpsiste eelistusi

E-raamat: Aircraft Design - A Systems Engineering Approach: A Systems Engineering Approach [Wiley Online]

Series edited by (University of Liverpool, UK), Series edited by (MIT), Series edited by (BAE Systems, UK), (Daniel Webster College, USA), Series edited by (Parker Aerospace Group, USA)
  • Formaat: 808 pages
  • Sari: Aerospace Series
  • Ilmumisaeg: 26-Oct-2012
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 111835270X
  • ISBN-13: 9781118352700
Teised raamatud teemal:
  • Wiley Online
  • Hind: 169,12 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 808 pages
  • Sari: Aerospace Series
  • Ilmumisaeg: 26-Oct-2012
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 111835270X
  • ISBN-13: 9781118352700
Teised raamatud teemal:
A comprehensive approach to the air vehicle design process using the principles of systems engineering

Due to the high cost and the risks associated with development, complex aircraft systems have become a prime candidate for the adoption of systems engineering methodologies. This book presents the entire process of aircraft design based on a systems engineering approach from conceptual design phase, through to preliminary design phase and to detail design phase.

Presenting in one volume the methodologies behind aircraft design, this book covers the components and the issues affected by design procedures. The basic topics that are essential to the process, such as aerodynamics, flight stability and control, aero-structure, and aircraft performance are reviewed in various chapters where required.  Based on these fundamentals and design requirements, the author explains the design process in a holistic manner to emphasise the integration of the individual components into the overall design. Throughout the book the various design options are considered and weighed against each other, to give readers a practical understanding of the process overall. 

Readers with knowledge of the fundamental concepts of aerodynamics, propulsion, aero-structure, and flight dynamics will find this book ideal to progress towards the next stage in their understanding of the topic. Furthermore, the broad variety of design techniques covered ensures that readers have the freedom and flexibility to satisfy the design requirements when approaching real-world projects.

Key features:

         Provides full coverage of the design aspects of an air vehicle including: aeronautical concepts, design techniques and design flowcharts

         Features end of chapter problems to reinforce the learning process as well as fully solved design examples at component level

          Includes fundamental explanations for aeronautical engineering students and practicing engineers

          Features a solutions manual to sample questions on the books companion website

Companion website -   www.wiley.com/go/sadraey
Preface xv
Series Preface xix
Acknowledgments xxi
Symbols and Acronyms xxiii
1 Aircraft Design Fundamentals
1(18)
1.1 Introduction to Design
1(3)
1.2 Engineering Design
4(4)
1.3 Design Project Planning
8(2)
1.4 Decision Making
10(2)
1.5 Feasibility Analysis
12(3)
1.6 Tort of Negligence
15(4)
References
17(2)
2 Systems Engineering Approach
19(30)
2.1 Introduction
19(1)
2.2 Fundamentals of Systems Engineering
20(3)
2.3 Conceptual System Design
23(6)
2.3.1 Definition
23(1)
2.3.2 Conceptual Design Flowchart
24(1)
2.3.3 Technical Performance Measures
25(1)
2.3.4 Functional Analysis
26(1)
2.3.5 System Trade-Off Analysis
27(1)
2.3.6 Conceptual Design Review
28(1)
2.4 Preliminary System Design
29(1)
2.5 Detail System Design
30(3)
2.6 Design Requirements
33(1)
2.7 Design Review, Evaluation, and Feedback
34(3)
2.8 Systems Engineering Approach in Aircraft Design
37(12)
2.8.1 Implementation of Systems Engineering
37(1)
2.8.2 Design Phases
38(1)
2.8.3 Design Flowchart
39(2)
2.8.4 Design Groups
41(2)
2.8.5 Design Steps
43(4)
References
47(2)
3 Aircraft Conceptual Design
49(44)
3.1 Introduction
49(1)
3.2 Primary Functions of Aircraft Components
50(2)
3.3 Aircraft Configuration Alternatives
52(10)
3.3.1 Wing Configuration
53(2)
3.3.2 Tail Configuration
55(1)
3.3.3 Propulsion System Configuration
55(1)
3.3.4 Landing Gear Configuration
56(2)
3.3.5 Fuselage Configuration
58(1)
3.3.6 Manufacturing-Related Items Configuration
58(1)
3.3.7 Subsystems Configuration
59(3)
3.4 Aircraft Classification and Design Constraints
62(6)
3.5 Configuration Selection Process and Trade-Off Analysis
68(6)
3.6 Conceptual Design Optimization
74(19)
3.6.1 Mathematical Tools
74(2)
3.6.2 Methodology
76(10)
Problems
86(6)
References
92(1)
4 Preliminary Design
93(68)
4.1 Introduction
93(1)
4.2 Maximum Take-Off Weight Estimation
94(19)
4.2.1 The General Technique
94(1)
4.2.2 Weight Build-up
95(1)
4.2.3 Payload Weight
96(1)
4.2.4 Crew Weight
97(3)
4.2.5 Fuel Weight
100(8)
4.2.6 Empty Weight
108(4)
4.2.7 Practical Steps of the Technique
112(1)
4.3 Wing Area and Engine Sizing
113(32)
4.3.1 Summary of the Technique
113(5)
4.3.2 Stall Speed
118(2)
4.3.3 Maximum Speed
120(11)
4.3.4 Take-Off Run
131(5)
4.3.5 Rate of Climb
136(4)
4.3.6 Ceiling
140(5)
4.4 Design Examples
145(16)
Problems
155(3)
References
158(3)
5 Wing Design
161(104)
5.1 Introduction
161(3)
5.2 Number of Wings
164(1)
5.3 Wing Vertical Location
165(5)
5.3.1 High Wing
165(3)
5.3.2 Low Wing
168(1)
5.3.3 Mid-Wing
169(1)
5.3.4 Parasol Wing
169(1)
5.3.5 The Selection Process
169(1)
5.4 Airfoil Section
170(25)
5.4.1 Airfoil Design or Airfoil Selection
111(62)
5.4.2 General Features of an Airfoil
173(3)
5.4.3 Characteristic Graphs of an Airfoil
176(6)
5.4.4 Airfoil Selection Criteria
182(1)
5.4.5 NACA Airfoils
183(5)
5.4.6 Practical Steps for Wing Airfoil Section Selection
188(7)
5.5 Wing Incidence
195(3)
5.6 Aspect Ratio
198(5)
5.7 Taper Ratio
203(3)
5.8 The Significance of Lift and Load Distributions
206(3)
5.9 Sweep Angle
209(14)
5.10 Twist Angle
223(3)
5.11 Dihedral Angle
226(4)
5.12 High-Lift Device
230(11)
5.12.1 The Functions of a High-Lift Device
230(2)
5.12.2 High-Lift Device Classification
232(3)
5.12.3 Design Technique
235(6)
5.13 Aileron
241(1)
5.14 Lifting-Line Theory
242(4)
5.15 Accessories
246(3)
5.15.1 Stroke
247(1)
5.15.2 Fence
247(1)
5.15.3 Vortex Generator
248(1)
5.15.4 Winglet
248(1)
5.16 Wing Design Steps
249(1)
5.17 Wing Design Example
250(15)
Problems
259(5)
References
264(1)
6 Tail Design
265(76)
6.1 Introduction
265(3)
6.2 Aircraft Trim Requirements
268(10)
6.2.1 Longitudinal Trim
270(6)
6.2.2 Directional and Lateral Trim
276(2)
6.3 A Review on Stability and Control
278(7)
6.3.1 Stability
278(4)
6.3.2 Control
282(2)
6.3.3 Handling Qualities
284(1)
6.4 Tail Configuration
285(9)
6.4.1 Basic Tail Configuration
285(3)
6.4.2 Aft Tail Configuration
288(6)
6.5 Canard or Aft Tail
294(4)
6.6 Optimum Tail Arm
298(3)
6.7 Horizontal Tail Parameters
301(16)
6.7.1 Horizontal Tail Design Fundamental Governing Equation
301(3)
6.7.2 Fixed, All-Moving, or Adjustable
304(2)
6.7.3 Airfoil Section
306(2)
6.7.4 Tail Incidence
308(3)
6.7.5 Aspect Ratio
311(1)
6.7.6 Taper Ratio
312(1)
6.7.7 Sweep Angle
313(1)
6.7.8 Dihedral Angle
313(1)
6.7.9 Tail Vertical Location
314(1)
6.7.10 Other Tail Geometries
315(1)
6.7.11 Control Provision
316(1)
6.7.12 Final Check
316(1)
6.8 Vertical Tail Design
317(12)
6.8.1 Vertical Tail Design Requirements
317(2)
6.8.2 Vertical Tail Parameters
319(10)
6.9 Practical Design Steps
329(2)
6.10 Tail Design Example
331(10)
Problems
336(4)
References
340(1)
7 Fuselage Design
341(72)
7.1 Introduction
341(1)
7.2 Functional Analysis and Design Flowchart
341(4)
7.3 Fuselage Configuration Design and Internal Arrangement
345(1)
7.4 Ergonomics
346(4)
7.4.1 Definitions
346(2)
7.4.2 Human Dimensions and Limits
348(2)
7.5 Cockpit Design
350(10)
7.5.1 Number of Pilots and Crew Members
351(2)
7.5.2 Pilot/Crew Mission
353(1)
7.5.3 Pilot/Crew Comfort/Hardship Level
353(1)
7.5.4 Pilot Personal Equipment
354(1)
7.5.5 Control Equipment
355(1)
7.5.6 Measurement Equipment
356(1)
7.5.7 Level of Automation
357(2)
7.5.8 External Constraints
359(1)
7.5.9 Cockpit Integration
359(1)
7.6 Passenger Cabin Design
360(8)
7.7 Cargo Section Design
368(4)
7.8 Optimum Length-to-Diameter Ratio
372(8)
7.8.1 Optimum Slenderness Ratio for Lowest fLD
372(6)
7.8.2 Optimum Slenderness Ratio for Lowest Fuselage Wetted Area
378(2)
7.8.3 Optimum Slenderness Ratio for the Lightest Fuselage
380(1)
7.9 Other Fuselage Internal Segments
380(8)
7.9.1 Fuel Tanks
381(4)
7.9.2 Radar Dish
385(1)
7.9.3 Wing Box
386(1)
7.9.4 Power Transmission Systems
387(1)
7.10 Lofting
388(6)
7.10.1 Aerodynamics Considerations
388(2)
7.10.2 Area Ruling
390(2)
7.10.3 Radar Detectability
392(1)
7.10.4 Fuselage Rear Section
392(2)
7.11 Fuselage Design Steps
394(1)
7.12 Design Example
395(18)
Problems
406(4)
References
410(3)
8 Propulsion System Design
413(66)
8.1 Introduction
413(1)
8.2 Functional Analysis and Design Requirements
414(2)
8.3 Engine Type Selection
416(20)
8.3.1 Aircraft Engine Classification
417(11)
8.3.2 Selection of Engine Type
428(8)
8.4 Number of Engines
436(3)
8.4.1 Flight Safety
437(1)
8.4.2 Other Influential Parameters
438(1)
8.5 Engine Location
439(9)
8.5.1 Design Requirements
439(2)
8.5.2 General Guidelines
441(2)
8.5.3 Podded versus Buried
443(1)
8.5.4 Pusher versus Tractor
444(2)
8.5.5 Twin-Jet Engine: Under-Wing versus Rear Fuselage
446(2)
8.6 Engine Installation
448(8)
8.6.1 Prop-Driven Engine
450(2)
8.6.2 Jet Engine
452(4)
8.7 Propeller Sizing
456(5)
8.8 Engine Performance
461(1)
8.8.1 Prop-Driven Engine
461(1)
8.8.2 Jet Engine
462(1)
8.9 Engine Selection
462(2)
8.10 Propulsion System Design Steps
464(3)
8.11 Design Example
467(12)
Problems
471(7)
References
478(1)
9 Landing Gear Design
479(68)
9.1 Introduction
479(2)
9.2 Functional Analysis and Design Requirements
481(3)
9.3 Landing Gear Configuration
484(10)
9.3.1 Single Main
484(1)
9.3.2 Bicycle
485(2)
9.3.3 Tail-Gear
487(1)
9.3.4 Tricycle
487(1)
9.3.5 Quadricycle
488(1)
9.3.6 Multi-Bogey
489(1)
9.3.7 Releasable Rail
489(1)
9.3.8 Skid
489(1)
9.3.9 Seaplane Landing Device
490(1)
9.3.10 Human Leg
491(1)
9.3.11 Landing Gear Configuration Selection Process
492(1)
9.3.12 Landing Gear Attachment
493(1)
9.4 Fixed, Retractable, or Separable Landing Gear
494(3)
9.5 Landing Gear Geometry
497(19)
9.5.1 Landing Gear Height
498(5)
9.5.2 Wheel Base
503(5)
9.5.3 Wheel Track
508(8)
9.6 Landing Gear and Aircraft Center of Gravity
516(8)
9.6.1 Tipback and Tipforward Angle Requirements
516(2)
9.6.2 Take-Off Rotation Requirement
518(6)
9.7 Landing Gear Mechanical Subsystems/Parameters
524(4)
9.7.1 Tire Sizing
524(1)
9.7.2 Shock Absorber
525(1)
9.7.3 Strut Sizing
526(1)
9.7.4 Steering Subsystem
527(1)
9.7.5 Landing Gear Retraction System
527(1)
9.8 Landing Gear Design Steps
528(1)
9.9 Landing Gear Design Example
529(18)
Problems
539(5)
References
544(3)
10 Weight of Components
547(28)
10.1 Introduction
547(2)
10.2 Sensitivity of Weight Calculation
549(4)
10.3 Aircraft Major Components
553(3)
10.4 Weight Calculation Technique
556(9)
10.4.1 Wing Weight
559(2)
10.4.2 Horizontal Tail Weight
561(1)
10.4.3 Vertical Tail Weight
561(1)
10.4.4 Fuselage Weight
562(1)
10.4.5 Landing Gear Weight
563(1)
10.4.6 Installed Engine Weight
564(1)
10.4.7 Fuel System Weight
564(1)
10.4.8 Weight of Other Equipment and Subsystems
565(1)
10.5
Chapter Examples
565(10)
Problems
570(3)
References
573(2)
11 Aircraft Weight Distribution
575(56)
11.1 Introduction
575(3)
11.2 Aircraft Center of Gravity Calculation
578(7)
11.3 Center of Gravity Range
585(5)
11.3.1 Fixed or Variable Center of Gravity
585(1)
11.3.2 Center of Gravity Range Definition
586(1)
11.3.3 Ideal Center of Gravity Location
587(3)
11.4 Longitudinal Center of Gravity Location
590(8)
11.5 Technique to Determine the Aircraft Forward and Aft Center of Gravity
598(8)
11.6 Weight Distribution Technique
606(9)
11.6.1 Fundamentals of Weight Distribution
607(2)
11.6.2 Longitudinal Stability Requirements
609(2)
11.6.3 Longitudinal Controllability Requirements
611(2)
11.6.4 Longitudinal Handling Quality Requirements
613(2)
11.7 Aircraft Mass Moment of Inertia
615(5)
11.8
Chapter Example
620(11)
Problems
624(6)
References
630(1)
12 Design of Control Surfaces
631(124)
12.1 Introduction
631(6)
12.2 Configuration Selection of Control Surfaces
637(1)
12.3 Handling Qualities
638(16)
12.3.1 Definitions
640(3)
12.3.2 Longitudinal Handling Qualities
643(4)
12.3.3 Lateral-Directional Handling Qualities
647(7)
12.4 Aileron Design
654(16)
12.4.1 Introduction
654(2)
12.4.2 Principles of Aileron Design
656(8)
12.4.3 Aileron Design Constraints
664(5)
12.4.4 Steps in Aileron Design
669(1)
12.5 Elevator Design
670(15)
12.5.1 Introduction
670(2)
12.5.2 Principles of Elevator Design
672(4)
12.5.3 Take-Off Rotation Requirement
676(4)
12.5.4 Longitudinal Trim Requirement
680(3)
12.5.5 Elevator Design Procedure
683(2)
12.6 Rudder Design
685(28)
12.6.1 Introduction to Rudder Design
685(3)
12.6.2 Fundamentals of Rudder Design
688(21)
12.6.3 Rudder Design Steps
709(4)
12.7 Aerodynamic Balance and Mass Balance
713(10)
12.7.1 Aerodynamic Balance
715(7)
12.7.2 Mass Balance
722(1)
12.8
Chapter Examples
723(32)
12.8.1 Aileron Design Example
723(6)
12.8.2 Elevator Design Example
729(9)
12.8.3 Rudder Design Example
738(7)
Problems
745(7)
References
752(3)
Appendices
755(2)
Appendix A Standard Atmosphere, SI Units
755(1)
Appendix B Standard Atmosphere, British Units
756(1)
Index 757
Mohammad H. Sadraey Daniel Webster College, New Hampshire, USA