Muutke küpsiste eelistusi

E-raamat: Algorithms for Communications Systems and their Applications, 2nd Edition 2nd Edition [Wiley Online]

(University of Bologna, Italy), (University of Padova, Italy), (University of Padova, Italy)
  • Formaat: 960 pages
  • Ilmumisaeg: 04-Feb-2021
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119567998
  • ISBN-13: 9781119567998
  • Wiley Online
  • Hind: 174,40 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 960 pages
  • Ilmumisaeg: 04-Feb-2021
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119567998
  • ISBN-13: 9781119567998
The definitive guide to problem-solving in the design of communications systems

In Algorithms for Communications Systems and their Applications, 2nd Edition, authors Benvenuto, Cherubini, and Tomasin have delivered the ultimate and practical guide to applying algorithms in communications systems. Written for researchers and professionals in the areas of digital communications, signal processing, and computer engineering, Algorithms for Communications Systems presents algorithmic and computational procedures within communications systems that overcome a wide range of problems facing system designers.

New material in this fully updated edition includes:





MIMO systems (Space-time block coding/Spatial multiplexing /Beamforming and interference management/Channel Estimation) OFDM and SC-FDMA (Synchronization/Resource allocation (bit and power loading)/Filtered OFDM) Improved radio channel model (Doppler and shadowing/mmWave) Polar codes (including practical decoding methods) 5G systems (New Radio architecture/initial access for mmWave/physical channels)

The book retains the essential coding and signal processing theoretical and operative elements expected from a classic text, further adopting the new radio of 5G systems as a case study to create the definitive guide to modern communications systems.
Preface xxv
Acknowledgements xxvii
1 Elements of signal theory
1(1)
1.1 Continuous-time linear systems
1(1)
1.2 Discrete-time linear systems
2(12)
Discrete Fourier transform
7(1)
The DFT operator
7(1)
Circular and linear convolution via DFT
8(2)
Convolution by the overlap-save method
10(1)
IIR and FIR filters
11(3)
1.3 Signal bandwidth
14(4)
The sampling theorem
17(1)
Heaviside conditions for the absence of signal distortion
17(1)
1.4 Passband signals and systems
18(11)
Complex representation
18(3)
Relation between a signal and its complex representation
21(5)
Baseband equivalent of a transformation
26(2)
Envelope and instantaneous phase and frequency
28(1)
1.5 Second-order analysis of random processes
29(14)
1.5.1 Correlation
29(1)
Properties of the autocorrelation function
30(1)
1.5.2 Power spectral density
30(1)
Spectral lines in the PSD
30(1)
Cross power spectral density
31(1)
Properties of the PSD
32(1)
PSD through filtering
32(1)
1.5.3 PSD of discrete-time random processes
32(1)
Spectral lines in the PSD
33(1)
PSD through filtering
34(1)
Minimum-phase spectral factorization
35(1)
1.5.4 PSD of passband processes
36(1)
PSD of in-phase and quadrature components
36(2)
Cyclostationary processes
38(5)
1.6 The autocorrelation matrix
43(3)
1.7 Examples of random processes
46(6)
1.8 Matched filter
52(3)
White noise case
53(2)
1.9 Ergodic random processes
55(10)
1.9.1 Mean value estimators
57(1)
Rectangular window
58(1)
Exponential filter
59(1)
General window
59(1)
1.9.2 Correlation estimators
60(1)
Unbiased estimate
60(1)
Biased estimate
60(1)
1.9.3 Power spectral density estimators
61(1)
Periodogram or instantaneous spectrum
61(1)
Welch periodogram
62(1)
Blackman and Tukey correlogram
63(1)
Windowing and window closing
63(2)
1.10 Parametric models of random processes
65(13)
ARMA
65(2)
M.A
67(1)
A.R
67(2)
Spectral factorization of AR models
69(1)
Whitening filter
70(1)
Relation between ARMA, MA, and AR models
70(2)
1.10.1 Autocorrelation of AR processes
72(2)
1.10.2 Spectral estimation of an AR process
74(1)
Some useful relations
75(2)
AR model of sinusoidal processes
77(1)
1.11 Guide to the bibliography
78(1)
Bibliography
78(1)
Appendix 1.A Multirate systems
79(1)
1.A.1 Fundamentals
79(2)
1.A.2 Decimation
81(2)
1.A.3 Interpolation
83(1)
1.A.4 Decimator filter
84(2)
1.A.5 Interpolator filter
86(2)
1.A.6 Rate conversion
88(2)
1.A.7 Time interpolation
90(1)
Linear interpolation
90(1)
Quadratic interpolation
91(1)
1.A.8 The noble identities
91(1)
1.A.9 The polyphase representation
92(6)
Efficient implementations
93(5)
Appendix 1B Generation of a complex Gaussian noise
98(1)
Appendix 1C Pseudo-noise sequences
99(43)
Maximal-length
99(2)
CAZAC
101(1)
Gold
102(3)
2 The Wiener filter
105(1)
2.1 The Wiener filter
105(1)
Matrix formulation
106(1)
Optimum filter design
107(2)
The principle of orthogonality
109(1)
Expression of the minimum mean-square error
110(1)
Characterization of the cost function surface
110(1)
The Wiener filter in the z-domain
111(3)
2.2 Linear prediction
114(4)
Forward linear predictor
115(660)
Optimum predictor coefficients
115(1)
Forward prediction error filter
116(1)
Relation between linear prediction and AR models
117(1)
First - and second-order solutions
117
2.3 The least squares method
118(1)
Data windowing
119(1)
Matrix formulation
119(1)
Correlation matrix
120(1)
Determination of the optimum filter coefficients
120(1)
2.3.1 The principle of orthogonality
121(1)
Minimum cost function
121(1)
The normal equation using the data matrix
122(1)
Geometric interpretation: the projection operator
122(3)
2.3.2 Solutions to the LS problem
125(1)
Singular value decomposition
125(1)
Minimum norm solution
125(1)
2.4 The estimation problem
126(1)
Estimation of a random variable
126(1)
MMSE estimation
127(1)
Extension to multiple observations
127(4)
Linear MMSE estimation of a random variable
129(1)
Linear MMSE estimation of a random vector
129(2)
2.4.1 The Cramer-Rao lower bound
131(1)
Extension to vector parameter
132(2)
2.5 Examples of application
134(1)
2.5.1 Identification of a linear discrete-time system
134(1)
2.5.2 Identification of a continuous-time system
135(3)
2.5.3 Cancellation of an interfering signal
138(1)
2.5.4 Cancellation of a sinusoidal interferer with known frequency
139(1)
2.5.5 Echo cancellation in digital subscriber loops
140(1)
2.5.6 Cancellation of a periodic interferer
141(1)
Bibliography
142(1)
Appendix 2 A The Levinson-Durbin algorithm
142(2)
Lattice filters
144(1)
The Delsarte-Genin algorithm
145(2)
3 Adaptive transversal filters
147(1)
3.1 The MSE design criterion
148(29)
3.1.1 The steepest descent or gradient algorithm
148(1)
Stability
149(1)
Conditions for convergence
150(1)
Adaptation gain
151(1)
Transient behaviour of the MSE
152(1)
3.1.2 The least mean square algorithm
153(1)
Implementation
154(1)
Computational complexity
155(1)
Conditions for convergence
155(1)
3.1.3 Convergence analysis of the LMS algorithm
156(1)
Convergence of the mean
157(1)
Convergence in the mean-square sense: real scalar case
157(2)
Convergence in the mean-square sense: general case
159(2)
Fundamental results
161(1)
Observations
162(1)
Final remarks
163(1)
3.1.4 Other versions of the LMS algorithm
163(1)
Leaky LMS
164(1)
Sign algorithm
164(1)
Normalized LMS
164(1)
Variable adaptation gain
165(1)
3.1.5 Example of application: the predictor
166(11)
3.2 The recursive least squares algorithm
177(1)
Normal equation
172(3)
Derivation
173(1)
Initialization
174(1)
Recursive form of the minimum cost function
175(1)
Convergence
176(1)
Computational complexity
176(1)
Example of application: the predictor
177(1)
3.3 Fast recursive algorithms
177(1)
3.3.1 Comparison of the various algorithms
177(1)
3.4 Examples of application
178(5)
3.4.1 Identification of a linear discrete-time system
178(1)
Finite alphabet case
179(8)
3.4.2 Cancellation of a sinusoidal interferer with known frequency
187(1)
Bibliography
187
4 Transmission channels
183(43)
4.1 Radio channel
183(39)
4.1.1 Propagation and used frequencies in radio transmission
183(1)
Basic propagation mechanisms
184(1)
Frequency ranges
184(1)
4.1.2 Analog front-end architectures
185(1)
Radiation masks
185(1)
Conventional superheterodyne receiver
186(1)
Alternative architectures
187(1)
Direct conversion receiver
187(1)
Single conversion to low-IF
188(1)
Double conversion and wideband IF
188(1)
4.1.3 General channel model
189(1)
High power amplifier
189(2)
Transmission medium
191(1)
Additive noise
191(1)
Phase noise
191(2)
4.1.4 Narrowband radio channel model
193(2)
Equivalent circuit at the receiver
195(1)
Multipath
196(1)
Path loss as a function of distance
197(3)
4.1.5 Fading effects in propagation models
200(1)
Macroscopic fading or shadowing
200(7)
Microscopic fading
207
4.1.6 Doppler shift
202(2)
4.1.7 Wideband channel model
204(1)
Multipath channel parameters
205(1)
Statistical description of fading channels
206(2)
4.1.8 Channel statistics
208(1)
Power delay profile
208(1)
Coherence bandwidth
209(1)
Doppler spectrum
210(1)
Coherence time
211(1)
Doppler spectrum models
211(1)
Power angular spectrum
211(1)
Coherence distance
212(1)
On fading
212(3)
4.1.9 Discrete-time model for fading channels
215(1)
Generation of a process with a pre-assigned spectrum
215(2)
4.1.10 Discrete-space model of shadowing
216(2)
4.1.11 Multiantenna systems
218(1)
Line of sight
218(1)
Discrete-time model
219(1)
Small number of scatterers
220(1)
Large number of scatterers
220(2)
Blockage effect
222(1)
4.2 Telephone channel
222(4)
4.2.1 Distortion
222(1)
4.2.2 Noise sources
222(1)
Quantization noise
222(2)
Thermal noise
224(1)
4.2.3 Echo
224(1)
Bibliography
225(1)
Appendix 4.A Discrete-time NB model for mm Wave channels
226(51)
4.A.1 Angular domain representation
226(3)
5 Vector quantization
229(20)
5.1 Basic concept
229(1)
5.2 Characterization of VQ
230(3)
Parameters determining VQ performance
231(1)
Comparison between VQ and scalar quantization
232(1)
5.3 Optimum quantization
233(2)
Generalized Lloyd algorithm
233(2)
5.4 The Linde, Buzo, and Gray algorithm
235(4)
Choice of the initial codebook
236(1)
Splitting procedure
236(2)
Selection of the training sequence
238(1)
5.4.1 k-means clustering
239(1)
5.5 Variants of VQ
239(3)
Tree search VQ
239(1)
Multistage VQ
240(1)
Product code VQ
240(2)
5.6 VQ of channel state information
242(2)
MISO channel quantization
242(2)
Channel feedback with feedforward information
244(1)
5.7 Principal component analysis
244(5)
5.7.1 PCA and &-means clustering
246(2)
Bibliography
248(1)
6 Digital transmission model and channel capacity
249(28)
6.1 Digital transmission model
249(4)
6.2 Detection
253(7)
6.2.1 Optimum detection
253(1)
M.L
254(1)
MAP
254(2)
6.2.2 Soft detection
256(1)
LLRs associated to bits of BMAP
256(2)
Simplified expressions
258(2)
6.2.3 Receiver strategies
260(1)
6.3 Relevant parameters of the digital transmission model
260(2)
Relations among parameters
261(1)
6.4 Error probability
262(3)
6.5 Capacity
265(5)
6.5.1 Discrete-time AWGN channel
266(1)
6.5.2 SISO narrowband AWGN channel
266(1)
Channel gain
267(1)
6.5.3 SISO dispersive AGN channel
267(2)
6.5.4 MIMO discrete-time NB AWGN channel
269(1)
Continuous-time model
270(1)
MIMO dispersive channel
270(1)
6.6 Achievable rates of modulations in AWGN channels
270(7)
6.6.1 Rate as a function of the SNR per dimension
271(1)
6.6.2 Coding strategies depending on the signal-to-noise ratio
272(2)
Coding gain
274(1)
6.6.3 Achievable rate of an AWGN channel using PAM
275(1)
Bibliography
276(1)
Appendix 6 A Gray labelling
277(112)
Appendix 6.B The Gaussian distribution and Marcum functions
278(3)
6.B.1 The Q function
278(1)
6.B.2 Marcum function
279(2)
7 Single-carrier modulation
281(108)
7.1 Signals and systems
281(13)
7.1.1 Baseband digital transmission (PAM)
281(1)
Modulator
281(2)
Transmission channel
283(1)
Receiver
283(1)
Power spectral density
284(1)
7.1.2 Passband digital transmission (QAM)
285(1)
Modulator
285(1)
Power spectral density
286(1)
Three equivalent representations of the modulator
287(1)
Coherent receiver
288(1)
7.1.3 Baseband equivalent model of a QAM system
288(1)
Signal analysis
288(3)
7.1.4 Characterization of system elements
291(1)
Transmitter
291(6)
Transmission channel
291(2)
Receiver
293(1)
7.2 Intersymbol interference
294(8)
Discrete-time equivalent system
294(1)
Nyquist pulses
295(3)
Eye diagram
298(4)
7.3 Performance analysis
302(2)
Signal-to-noise ratio
302(1)
Symbol error probability in the absence of ISI
303(1)
Matched filter receiver
303(1)
7.4 Channel equalization
304(36)
7.4.1 Zero-forcing equalizer
304(1)
7.4.2 Linear equalizer
305(1)
Optimum receiver in the presence of noise and ISI
305(1)
Alternative derivation of the IIR equalizer
306(4)
Signal-to-noise ratio at detector
310(1)
7.4.3 LE with a finite number of coefficients
310(261)
Adaptive LE
311(4)
Fractionally spaced equalizer
315(1)
7.4.4 Decision feedback equalizer
315(3)
Design of a DFE with a finite number of coefficients
318(2)
Design of a fractionally spaced DFE
320(2)
Signal-to-noise ratio at the decision point
322(1)
Remarks
322(1)
7.4.5 Frequency domain equalization
323(1)
DFE with data frame using a unique word
323(3)
7.4.6 LE-ZF
326(1)
7.4.7 DFE-ZF with IIR filters
327(4)
DFE-ZF as noise predictor
331(1)
DFE as ISI and noise predictor
331(2)
7.4.8 Benchmark performance of LE-ZF and DFE-ZF
333(1)
Comparison
333(1)
Performance for two channel models
334(1)
7.4.9 Passband equalizers
335(1)
Passband receiver structure
335(2)
Optimization of equalizer coefficients and carrier phase offset
337(1)
Adaptive method
338(2)
7.5 Optimum methods for data detection
340(30)
Maximum a posteriori probability (MAP) criterion
341(1)
7.5.1 Maximum-likelihood sequence detection
341(1)
Lower bound to error probability using MLSD
342(1)
The Viterbi algorithm
343(3)
Computational complexity of the VA
346(1)
7.5.2 Maximum a posteriori probability detector
347(1)
Statistical description of a sequential machine
347(1)
The forward-backward algorithm
348(3)
Scaling
351(1)
The log likelihood function and the Max-Log-MAP criterion
352(1)
LLRs associated to bits of BMAP
353(1)
Relation between Max-Log-MAP and Log-MAP
354(1)
7.5.3 Optimum receivers
354(2)
7.5.4 The Ungerboeck's formulation of MLSD
356(2)
7.5.5 Error probability achieved by MLSD
358(3)
Computation of the minimum distance
361(4)
7.5.6 The reduced-state sequence detection
365(1)
Trellis diagram
365(2)
The RSSE algorithm
367(2)
Further simplification: DFSE
369(1)
7.6 Numerical results obtained by simulations
370(3)
QPSK over a minimum-phase channel
370(1)
QPSK over a non-minimum phase channel
370(2)
8-PSK over a minimum phase channel
372(1)
8-PSK over a non-minimum phase channel
372(1)
7.7 Precoding for dispersive channels
373(5)
7.7.1 Tornlinson-Harashima precoding
374(2)
7.7.2 Flexible precoding
376(2)
7.8 Channel estimation
378(8)
7.8.1 The correlation method
378(1)
7.8.2 The LS method
379(1)
Formulation using the data matrix
380(1)
7.8.3 Signal-to-estimation error ratio
380(1)
Computation of the signal-to-estimation error ratio
381(3)
On the selection of the channel length
384(1)
7.8.4 Channel estimation for multirate systems
384(1)
7.8.5 The LMMSE method
385(1)
7.9 Faster-than-Nyquist Signalling
386(3)
Bibliography
387(2)
Appendix 7.A Simulation of a QAM system
389(4)
Appendix 7.B Description of a finite-state machine
393(1)
Appendix 7.C Line codes for PAM systems
394(117)
7.C.1 Line codes
394(5)
Non-return-to-zero format
395(1)
Return-to-zero format
396(1)
Biphase format
397(1)
Delay modulation or Miller code
398(1)
Block line codes
398(1)
Alternate mark inversion
398(1)
7.C.2 Partial response systems
399(11)
The choice of the PR polynomial
401(3)
Symbol detection and error probability
404(2)
Precoding
406(1)
Error probability with precoding
407(1)
Alternative interpretation of PR systems
408(2)
7.D Implementation of a QAM transmitter
410(3)
8 Multicarrier modulation
413(34)
8.1 MC systems
413(1)
8.2 Orthogonality conditions
414(2)
Time domain
415(1)
Frequency domain
415(1)
z-Transform domain
415(1)
8.3 Efficient implementation of MC systems
416(6)
MC implementation employing matched filters
416(2)
Orthogonality conditions in terms of the polyphase components
418(1)
MC implementation employing a prototype filter
419(3)
8.4 Non-critically sampled filter banks
422(4)
8.5 Examples of MC systems
426(3)
OFDM or DMT
426(1)
Filtered multitone
427(2)
8.6 Analog signal processing requirements in MC systems
429(3)
8.6.1 Analog filter requirements
429(1)
Interpolator filter and virtual subchannels
429(1)
Modulator filter
430(1)
8.6.2 Power amplifier requirements
431(1)
8.7 Equalization
432(5)
8.7.1 OFDM equalization
432(2)
8.7.2 FMT equalization
434(1)
Per-subchannel fractionally spaced equalization
434(1)
Per-subchannel T-spaced equalization
435(1)
Alternative per-subchannel T-spaced equalization
436(1)
8.8 Orthogonal time frequency space modulation
437(1)
OTFS equalization
437(1)
8.9 Channel estimation in OFDM
437(5)
Instantaneous estimate or LS method
438(2)
LMMSE
440(1)
The LS estimate with truncated impulse response
440(1)
8.9.1 Channel estimate and pilot symbols
441(1)
8.10 Multiuser access schemes
442(2)
8.10.1 OFDMA
442(1)
8.10.2 SC-FDMA or DFT-spread OFDM
443(1)
8.11 Comparison between MC and SC systems
444(1)
8.12 Other MC waveforms
445(2)
Bibliography
446(1)
9 Transmission over multiple input multiple output channels
447(36)
9.1 The MIMO NB channel
447(5)
Spatial multiplexing and spatial diversity
451(1)
Interference in MIMO channels
452(1)
9.2 CSI only at the receiver
452(11)
9.2.1 SIMO combiner
452(3)
Equalization and diversity
455(1)
9.2.2 MIMO combiner
455(1)
Zero-forcing
456(1)
MMSE
456(1)
9.2.3 MIMO non-linear detection and decoding
457(1)
V-BLAST system
457(1)
Spatial modulation
458(1)
9.2.4 Space-time coding
459(1)
The Alamouti code
459(2)
The Golden code
461(1)
9.2.5 MIMO channel estimation
461(1)
The least squares method
462(1)
The LMMSE method
463(1)
9.3 CSI only at the transmitter
463(6)
9.3.1 MISO linear precoding
463(1)
MISO antenna selection
464(1)
9.3.2 MIMO linear precoding
465(1)
ZF precoding
465(1)
9.3.3 MIMO non-linear precoding
466(1)
Dirty paper coding
467(1)
TH precoding
468(1)
9.3.4 Channel estimation for CSIT
469(1)
9.4 CSI at both the transmitter and the receiver
469(1)
9.5 Hybrid beamfonning
470(2)
Hybrid beamforming and angular domain representation
472(1)
9.6 Multiuser MIMO: broadcast channel
472(4)
CSI only at the receivers
473(1)
CSI only at the transmitter
473(1)
9.6.1 CSI at both the transmitter and the receivers
473(1)
Block diagonalization
473(1)
User selection
474(1)
Joint spatial division and multiplexing
475(1)
9.6.2 Broadcast channel estimation
476(1)
9.7 Multiuser MIMO: multiple-access channel
476(2)
CSI only at the transmitters
477(1)
CSI only at the receiver
477(1)
9.7.1 CSI at both the transmitters and the receiver
477(1)
Block diagonalization
477(1)
9.7.2 Multiple-access channel estimation
478(1)
9.8 Massive MIMO
478(5)
9.8.1 Channel hardening
478(1)
9.8.2 Multiuser channel orthogonality
479(1)
Bibliography
479(4)
10 Spread-spectrum systems
483(28)
10.1 Spread-spectrum techniques
483(10)
10.1.1 Direct sequence systems
483(7)
Classification of CDMA systems
490(1)
Synchronization
490(1)
10.1.2 Frequency hopping systems
491(1)
Classification of FH systems
491(2)
10.2 Applications of spread-spectrum systems
493(3)
10.2.1 Anti-jamming
494(2)
10.2.2 Multiple access
496(1)
10.2.3 Interference rejection
496(1)
10.3 Chip matched filter and rake receiver
496(4)
Number of resolvable rays in a multipath channel
497(1)
Chip matched filter
498(2)
10.4 Interference
500(2)
Detection strategies for multiple-access systems
502(1)
10.5 Single-user detection
502(2)
Chip equalizer
502(1)
Symbol equalizer
503(1)
10.6 Multiuser detection
504(5)
10.6.1 Block equalizer
504(2)
10.6.2 Interference cancellation detector
506(1)
Successive interference cancellation
506(1)
Parallel interference cancellation
507(1)
10.6.3 ML multiuser detector
508(1)
Correlation matrix
508(1)
Whitening filter
508(1)
10.7 Multicarrier CDMA systems
509(2)
Bibliography
510(1)
Appendix 10 A Walsh Codes
511
11 Channel codes
515
11.1 System model
516(1)
11.2 Block codes
517(59)
11.2.1 Theory of binary codes with group structure
518(1)
Properties
518(2)
Parity check matrix
520(2)
Code generator matrix
522(1)
Decoding of binary parity check codes
523(1)
Cosets
523(1)
Two conceptually simple decoding methods
524(1)
Syndrome decoding
525(2)
11.2.2 Fundamentals of algebra
527(1)
modulo-q arithmetic
528(2)
Polynomials with coefficients from a field
530(1)
Modular arithmetic for polynomials
531(3)
Devices to sum and multiply elements in a finite field
534(1)
Remarks on finite fields
535(3)
Roots of a polynomial
538(3)
Minimum function
541(1)
Methods to determine the minimum function
542(2)
Properties of the minimum function
544(1)
11.2.3 Cyclic codes
545(1)
The algebra of cyclic codes
545(1)
Properties of cyclic codes
546(5)
Encoding by a shift register of length r
551(1)
Encoding by a shift register of length k
552(1)
Hard decoding of cyclic codes
552(2)
Hamming codes
554(2)
Burst error detection
556(1)
11.2.4 Simplex cyclic codes
556(1)
Property
557(1)
Relation to PN sequences
558(1)
11.2.5 BCH codes
558(1)
An alternative method to specify the code polynomials
558(2)
Bose-Chaudhuri-Hocquenhem codes
560(2)
Binary BCH codes
562(2)
Reed-Solomon codes
564(2)
Decoding of BCH codes
566(2)
Efficient decoding of BCH codes
568(7)
11.2.6 Performance of block codes
575(1)
11.3 Convolutional codes
576(17)
11.3.1 General description of convolutional codes
579(2)
Parity check matrix
581(1)
Generator matrix
581(1)
Transfer function
582(3)
Catastrophic error propagation
585(1)
11.3.2 Decoding of convolutional codes
586(1)
Interleaving
587(1)
Two decoding models
587(1)
Decoding by the Viterbi algorithm
588(1)
Decoding by the forward-backward algorithm
589(1)
Sequential decoding
590(2)
11.3.3 Performance of convolutional codes
592(1)
11.4 Puncturing
593(1)
11.5 Concatenated codes
593(4)
The soft-output Viterbi algorithm
593(4)
11.6 Turbo codes
597(80)
Encoding
597(3)
The basic principle of iterative decoding
600(7)
FBA revisited
607(1)
Iterative decoding
608(62)
Performance evaluation
670(7)
11.7 Iterative detection and decoding
677
11.8 Low-density parity check codes
614(13)
11.8.1 Representation of LDPC codes
614(1)
Matrix representation
614(1)
Graphical representation
615(1)
11.8.2 Encoding
616(1)
Encoding procedure
616(1)
11.8.3 Decoding
617(1)
Hard decision decoder
617(2)
The sum-product algorithm decoder
619(3)
The LR-SPA decoder
622(1)
The LLR-SPA or log-domain SPA decoder
623(2)
The min-sum decoder
625(1)
Other decoding algorithms
625(1)
11.8.4 Example of application
625(1)
Performance and coding gain
625(2)
11.8.5 Comparison with turbo codes
627(1)
11.9 Polar codes
627(21)
11.9.1 Encoding
628(2)
Internal CRC
630(1)
LLRs associated to code bits
631(1)
11.9.2 Tanner graph
631(2)
11.9.3 Decoding algorithms
633(1)
Successive cancellation decoding - the principle
634(1)
Successive cancellation decoding - the algorithm
635(3)
Successive cancellation list decoding
638(1)
Other decoding algorithms
639(1)
11.9.4 Frozen set design
640(1)
Genie-aided SC decoding
640(1)
Design based on density evolution
641(2)
Channel polarization
643(1)
11.9.5 Puncturing and shortening
644(1)
Puncturing
644(1)
Shortening
645(2)
Frozen set design
647(1)
11.9.6 Performance
647(1)
11.10 Milestones in channel coding
648
Bibliography
649
Appendix
11(773)
A Non-binary parity check codes
652(7)
Linear codes
653(1)
Parity check matrix
654(1)
Code generator matrix
655(1)
Decoding of non-binary parity check codes
656(1)
Coset
656(1)
Two conceptually simple decoding methods
656(1)
Syndrome decoding
657(2)
12 Trellis coded modulation
659(28)
12.1 Linear TCM for one- and two-dimensional signal sets
660(19)
12.1.1 Fundamental elements
660(1)
Basic TCM scheme
661(1)
Example
662(2)
12.1.2 Set partitioning
664(2)
12.1.3 Lattices
666(5)
12.1.4 Assignment of symbols to the transitions in the trellis
671(4)
12.1.5 General structure of the encoder/bit-mapper
675(2)
Computation of dfree
677(2)
12.2 Multidimensional TCM
679(5)
Encoding
680(2)
Decoding
682(2)
12.3 Rotationally invariant TCM schemes
684(3)
Bibliography
685(2)
13 Techniques to achieve capacity
687(18)
13.1 Capacity achieving solutions for multicarrier systems
687(11)
13.1.1 Achievable bit rate of OFDM
687(1)
13.1.2 Waterfilling solution
688(1)
Iterative solution
689(1)
13.1.3 Achievable rate under practical constraints
689(1)
Effective SNR and system margin in MC systems
690(1)
Uniform power allocation and minimum rate per subchannel
690(1)
13.1.4 The bit and power loading problem revisited
691(1)
Problem formulation
692(1)
Some simplifying assumptions
692(1)
On loading algorithms
693(1)
The Hughes-Hartogs algorithm
694(1)
The Krongold-Ramchandran-Jones algorithm
694(2)
The Chow-Cioffi-Bingham algorithm
696(2)
Comparison
698(1)
13.2 Capacity achieving solutions for single carrier systems
698(7)
Achieving capacity
702(1)
Bibliography
703(2)
14 Synchronization
705(1)
14.1 The problem of synchronization for QAM systems
705(2)
14.2 The phase-locked loop
707(1)
14.2.1 PLL baseband model
708(1)
Linear approximation
709(2)
14.2.2 Analysis of the PLL in the presence of additive noise
711(1)
Noise analysis using the linearity assumption
711(2)
14.2.3 Analysis of a second-order PLL
713(3)
14.3 Costas loop
716(4)
14.3.1 PAM signals
716(3)
14.3.2 QAM signals
719(1)
14.4 The optimum receiver
720(5)
Timing recovery
721(4)
Carrier phase recovery
725(1)
14.5 Algorithms for timing and carrier phase recovery
725(15)
14.5.1 ML criterion
726(1)
Assumption of slow time varying channel
726(1)
14.5.2 Taxonomy of algorithms using the ML criterion
726(1)
Feedback estimators
727(1)
Early-late estimators
728(1)
14.5.3 Timing estimators
729(1)
Non-data aided
729(3)
NDA synchronization via spectral estimation
732(1)
Data aided and data directed
733(2)
Data and phase directed with feedback: differentiator scheme
735(1)
Data and phase directed with feedback: Mueller and Muller scheme
735(3)
Non-data aided with feedback
738(1)
14.5.4 Phasor estimators
738(1)
Data and timing directed
738(1)
Non-data aided for M-PSK signals
738(1)
Data and timing directed with feedback
739(1)
14.6 Algorithms for carrier frequency recovery
740(4)
14.6.1 Frequency offset estimators
741(1)
Non-data aided
741(1)
Non-data aided and timing independent with feedback
742(1)
Non-data aided and timing directed with feedback
743(1)
14.6.2 Estimators operating at the modulation rate
743(1)
Data aided and data directed
744(1)
Non-data aided for M-PSK
744(1)
14.7 Second-order digital PLL
744(1)
14.8 Synchronization in spread-spectrum systems
745(12)
14.8.1 The transmission system
745(1)
Transmitter
745(1)
Optimum receiver
745(1)
14.8.2 Timing estimators with feedback
746(1)
Non-data aided: non-coherent DLL
747(1)
Non-data aided modified code tracking loop
747(1)
Data and phase directed: coherent DLL
747(10)
14.9 Synchronization in OFDM
751(1)
14.9.1 Frame synchronization
751(1)
Effects of STO
751(1)
Schmidl and Cox algorithm
752(2)
14.9.2 Carrier frequency synchronization
754(1)
Estimator performance
755(1)
Other synchronization solutions
755(1)
14.10 Synchronization in SC-FDMA
756(3)
Bibliography
756(3)
15 Self-training equalization
759(25)
15.1 Problem definition and fundamentals
759(6)
Minimization of a special function
762(3)
15.2 Three algorithms for PAM systems
765(2)
The Sato algorithm
765(1)
Benveniste-Goursat algorithm
766(1)
Stop-and-go algorithm
766(1)
Remarks
767(1)
15.3 The contour algorithm for PAM systems
767(3)
Simplified realization of the contour algorithm
769(1)
15.4 Self-training equalization for partial response systems
770(3)
The Sato algorithm
770(2)
The contour algorithm
772(1)
15.5 Self-training equalization for QAM systems
773(6)
The Sato algorithm
773(2)
15.5.1 Constant-modulus algorithm
775(1)
The contour algorithm
776(1)
Joint contour algorithm and carrier phase tracking
777(2)
15.6 Examples of applications
779(5)
Bibliography
783(1)
Appendix 15.A On the convergence of the contour algorithm
784(47)
16 Low-complexity demodulators
787(44)
16.1 Phase-shift keying
787(6)
16.1.1 Differential PSK
787(2)
Error probability of M-DPSK
789(2)
16.1.2 Differential encoding and coherent demodulation
791(1)
Differentially encoded BPSK
791(1)
Multilevel case
791(2)
16.2 (D)PSK non-coherent receivers
793(5)
16.2.1 Baseband differential detector
793(1)
16.2.2 IF-band (1 bit) differential detector
794(2)
Signal at detection point
796(1)
16.2.3 FM discriminator with integrate and dump filter
797(1)
16.3 Optimum receivers for signals with random phase
798(9)
ML criterion
799(1)
Implementation of a non-coherent ML receiver
800(4)
Error probability for a non-coherent binary FSK system
804(2)
Performance comparison of binary systems
806(1)
16.4 Frequency-based modulations
807(9)
16.4.1 Frequency shift keying
807(1)
Coherent demodulator
808(1)
Non-coherent demodulator
808(1)
Limiter-discnnunator FM demodulator
809(1)
16.4.2 Minimum-shift keying
810(2)
Power spectral density of CPFSK
812(2)
Performance
814(1)
MSK with differential precoding
815(1)
16.4.3 Remarks on spectral containment
816(1)
16.5 Gaussian MSK
816(15)
16.5.1 Implementation of a GMSK scheme
819(2)
Configuration I
821(1)
Configuration II
821(1)
Configuration III
822(2)
16.5.2 Linear approximation of a GMSK signal
824(1)
Performance of GMS K
824(5)
Performance in the presence of multipath
829(1)
Bibliography
830(1)
Appendix 16.A Continuous phase modulation
831(59)
Alternative definition of CPM
831(1)
Advantages of CPM
832(1)
17 Applications of interference cancellation
833(24)
17.1 Echo and near-end crosstalk cancellation for PAM systems
834(8)
Crosstalk cancellation and full-duplex transmission
835(1)
Polyphase structure of the canceller
836(1)
Canceller at symbol rate
836(1)
Adaptive canceller
837(1)
Canceller structure with distributed arithmetic
838(4)
17.2 Echo cancellation for QAM systems
842(2)
17.3 Echo cancellation for OFDM systems
844(2)
17.4 Multiuser detection for VDSL
846(11)
17.4.1 Upstream power back-off
850(1)
17.4.2 Comparison of PBO methods
851(4)
Bibliography
855(2)
18 Examples of communication systems
857(33)
18.1 The 5G cellular system
857(11)
18.1.1 Cells in a wireless system
857(1)
18.1.2 The release 15 of the 3GPP standard
858(1)
18.1.3 Radio access network
859(1)
Time-frequency plan
859(2)
NR data transmission chain
861(1)
OFDM numerology
861(1)
Channel estimation
862(1)
18.1.4 Downlink
862(1)
Synchronization
863(1)
Initial access or beam sweeping
864(1)
Channel estimation
865(1)
Channel state information reporting
865(1)
18.1.5 Uplink
865(1)
Transform precoding numerology
866(1)
Channel estimation
866(1)
Synchronization
866(1)
Timing advance
867(1)
18.1.6 Network slicing
867(1)
18.2 GSM
868(4)
Radio subsystem
870(2)
18.3 Wireless local area networks
872(1)
Medium access control protocols
872(1)
18.4 DECT
873(2)
18.5 Bluetooth
875(1)
18.6 Transmission over unshielded twisted pairs
875(6)
18.6.1 Transmission over UTP in the customer service area
876(4)
18.6.2 High-speed transmission over UTP in local area networks
880(1)
18.7 Hybrid fibre/coaxial cable networks
881(9)
Ranging and power adjustment in OFDMA systems
885(1)
Ranging and power adjustment for uplink transmission
886(3)
Bibliography
889(1)
Appendix 18.A Duplexing
890(1)
Three methods
890(1)
Appendix 18.B Detenninistic access methods
890(25)
19 High-speed communications over twisted-pair cables
893(22)
19.1 Quaternary partial response class-IV system
893(13)
Analog filter design
893(1)
Received signal and adaptive gain control
894(1)
Near-end crosstalk cancellation
895(1)
Decorrelation filter
895(1)
Adaptive equalizer
895(1)
Compensation of the timing phase drift
896(1)
Adaptive equalizer coefficient adaptation
896(1)
Convergence behaviour of the various algorithms
897(1)
19.1.1 VLSI implementation
897(1)
Adaptive digital NEXT canceller
897(3)
Adaptive digital equalizer
900(4)
Timing control
904(2)
Viterbi detector
906(1)
19.2 Dual-duplex system
906(9)
Dual-duplex transmission
906(2)
Physical layer control
908(1)
Coding and decoding
909(3)
19.2.1 Signal processing functions
912(1)
The 100BASE-T2 transmitter
912(1)
The 100BASE-T2 receiver
913(1)
Computational complexity of digital receive filters
914(1)
Bibliography
915(1)
Appendix 19.A Interference suppression
915(2)
Index 917