Muutke küpsiste eelistusi

E-raamat: Analytical Techniques in the Oil and Gas Industry for Environmental Monitoring [Wiley Online]

  • Formaat: 464 pages
  • Ilmumisaeg: 02-Oct-2020
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119523311
  • ISBN-13: 9781119523314
  • Wiley Online
  • Hind: 212,46 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 464 pages
  • Ilmumisaeg: 02-Oct-2020
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119523311
  • ISBN-13: 9781119523314

A thorough introduction to environmental monitoring in the oil and gas industry

Analytical Techniques in the Oil and Gas Industry for Environmental Monitoring examines the analytical side of the oil and gas industry as it also provides an overall introduction to the industry. You’ll discover how oil and natural gas are sourced, refined, and processed. You can learn about what’s produced from oil and natural gas, and why evaluating these sourced resources is important.

The book discusses the conventional analyses for oil and natural gas feeds, along with their limitations. It offers detailed descriptions of advanced analytical techniques that are commercially available, plus explanations of gas and oil industry equipment and instrumentation. You’ll find technique descriptions supplemented with a list of references as well as with real-life application examples. With this book as a reference, you can prepare to apply specific analytical methods in your organization’s lab environment. Analytical Techniques can also serve as your comprehensive resource on key techniques in the characterization of oil and gas samples, within both refinery and environmental contexts. 

  • Understand of the scope of oil and gas industry techniques available
  • Consider the benefits and limitations of each available process
  • Prepare for applying analytical techniques in your lab
  • See real examples and a list of references for each technique
  • Read descriptions of off-line analytics, as well as on-line and process applications
As a chemist, engineer, instructor, or student, this book will also expand your awareness of the role these techniques have in environmental monitoring and environmental impact assessments.
Part I Scope
1(20)
1 Introduction
3(18)
Melissa N. Dunkle
William L. Winniford
1.1 Introduction
3(4)
1.1.1 Petroleum Cycle
3(1)
1.1.2 Well-Known Cases of Environmental Contamination
4(1)
1.1.2.1 Oil-Drilling Rig Deepwater Horizon
4(2)
1.1.2.2 Sanchi Oil Tanker Collision
6(1)
1.1.3 Summary
6(1)
1.2 Petroleum
7(2)
1.3 Analytics
9(3)
1.4 Reservoir Tracers
12(1)
1.5 Emissions from the Petroleum Industry
12(2)
1.6 Environmental Analysis and Monitoring
14(3)
1.7 Conclusions
17(4)
References
17(4)
Part II Introduction to the Petroleum Industry
21(100)
2 Petroleum: From Wells to Wheels
23(98)
Clifford C. Walters
Steven W. Levine
Frank C. Wang
2.1 Introduction
23(1)
2.2 Petroleum in the Ancient World
23(5)
2.3 The Petroleum System
28(9)
2.3.1 Source Rocks
28(6)
2.3.2 Generation of Petroleum
34(1)
2.3.3 Migration and Accumulation
35(2)
2.4 The Upstream
37(30)
2.4.1 Exploration
37(1)
2.4.1.1 Play and Prospect Evaluation
38(5)
2.4.1.2 Predicting Petroleum Quantity and Quality
43(2)
2.4.2 Drilling
45(1)
2.4.2.1 Development of Drilling Technology
46(3)
2.4.2.2 Modern Drilling Practices
49(3)
2.4.2.3 Well Logging
52(5)
2.4.2.4 Development
57(1)
2.4.3 Production
58(1)
2.4.3.1 Primary, Secondary, and Tertiary Production
58(3)
2.4.3.2 Surface Oil Sands
61(1)
2.4.3.3 Unconventional Resources
61(5)
2.4.3.4 Plug and Abandonment
66(1)
2.5 Mid-Stream
67(5)
2.5.1 Transportation
67(3)
2.5.2 Storage
70(2)
2.6 Downstream
72(35)
2.6.1 Evolution of Modern Refining
72(1)
2.6.2 Modern Refinery Processes
73(2)
2.6.2.1 Crude Oil Pretreatment
75(1)
2.6.2.2 Separation
75(6)
2.6.2.3 Conversion
81(14)
2.6.2.4 Purification
95(5)
2.6.2.5 Sweetening and Treating
100(2)
2.6.3 Fuel Products
102(1)
2.6.3.1 Mogas (Motor Gasoline)
103(1)
2.6.3.2 Diesel
104(2)
2.6.3.3 Jet Fuels/Kerosene
106(1)
2.6.3.4 Fuel Oil
106(1)
2.6.3.5 Liquefied Petroleum Gas (LPG)
107(1)
2.7 Petrochemicals
107(3)
2.7.1 Olefins: Prime and Higher Olefins
107(2)
2.7.2 Aromatics
109(1)
2.7.3 Lubes
109(1)
2.7.4 Other Products
110(1)
2.8 The Future of Petroleum
110(11)
References
112(9)
Part III Analytical Techniques Utilized in the Petroleum Industry
121(208)
3 Petroleum Analysis Through Conventional Analytical Techniques
123(38)
Melissa N. Dunkle
William L. Winniford
3.1 Introduction to Petroleum Analysis
123(1)
3.2 Brief History on Petroleum Analysis
123(12)
3.2.1 How Petroleum Analysis Influenced Developments in Gas Chromatography
124(1)
3.2.1.1 Detector Technology
125(7)
3.2.1.2 Column Technology
132(3)
3.3 Conventional Analysis of Petroleum
135(26)
3.3.1 Distillation
136(1)
3.3.2 PIONA Analyzer
137(1)
3.3.3 Detailed Hydrocarbon Analysis
138(1)
3.3.4 GC-MS Analysis for Unknown and Biomarker Identification
139(1)
3.3.4.1 Diamondoids
140(1)
3.3.4.2 Naphthenic Acids
141(1)
3.3.4.3 Biomarkers
142(3)
3.3.5 Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbon (PAH) and Their Environmental Impact
145(1)
3.3.6 Tar Analysis
146(3)
3.3.7 Analysis of Heteroatoms and Heavy Metals
149(1)
3.3.7.1 Heteroatoms
149(1)
3.3.7.2 Heavy Metals
150(1)
3.3.8 Additional Analytical Applications for Petroleum
150(1)
References
150(11)
4 Advanced Analytics for the Evaluation of Oil, Natural Gas, and Shale Oil/Gas
161(64)
Emmie Dumont
Pat Sandra
Kyra A. Murrell
Frank L. Dorman
Allegro Leghissa
Kevin A. Schug
4.1 IRMS in the Oil and Gas Industry
161(15)
4.1.1 IRMS: General
161(1)
4.1.1.1 Introduction
161(1)
4.1.1.2 Isotopic Fingerprint
162(2)
4.1.2 IRMS: The Technique
164(1)
4.1.2.1 Introduction
164(1)
4.1.2.2 Ionization
164(1)
4.1.2.3 Mass Analyzer
164(1)
4.1.2.4 Detection
165(1)
4.1.2.5 Referencing
165(1)
4.1.2.6 Bulk Analysis
165(1)
4.1.3 Compound Specific IRMS
166(1)
4.1.3.1 Introduction
166(1)
4.1.3.2 GC-IRMS
166(1)
4.1.3.3 LC-IRMS
167(1)
4.1.3.4 Two-Dimensional GC-IRMS
168(1)
4.1.4 IRMS Applications in the Oil and Gas Industry
169(1)
4.1.4.1 Introduction
169(2)
4.1.4.2 Oil Fingerprinting
171(1)
4.1.4.3 Air Pollution
172(2)
4.1.4.4 Differentiating Oil Derived Products
174(1)
4.1.4.5 Inherent Tracers for Carbon Capture and Storage (CCS)
174(2)
4.1.5 Conclusions Over Utilization of IRMS in the Oil and Gas Industry
176(1)
4.2 Advanced Analytics for the Evaluation of Oil, Natural Gas, and Shale Oil/Gas: Comprehensive GC (GC x GC)
176(26)
4.2.1 Background
176(2)
4.2.2 Basic Principles of GC x GC: Instrumentation
178(2)
4.2.3 Basic Principles of GC X GC: Columns
180(4)
4.2.4 Basic Principles of GC x GC: Modulators
184(2)
4.2.5 Basic Principles of GC x GC: Detectors
186(1)
4.2.6 Basic Principles of GC x GC: Data Processing
187(3)
4.2.7 Petrochemical Applications: Group-Type Analysis
190(3)
4.2.8 Petrochemical Applications: Contaminated Soil and Sediments
193(3)
4.2.9 Petrochemical Applications: Marine Oil Spills
196(3)
4.2.10 Petrochemical Applications: Hydraulic Fracturing
199(2)
4.2.11 Conclusions ofUtilizingGCxGC in the Oil and Gas Industry
201(1)
4.3 Petroleum and Hydrocarbon Analysis by Gas Chromatography: Vacuum Ultraviolet Spectroscopy
202(23)
4.3.1 Introduction to GC-VUV
202(2)
4.3.2 GC-VUV Data Processing
204(2)
4.3.2.1 Time Interval Deconvolution (TID) Algorithm
206(2)
4.3.2.2 Pseudo-absolute Quantitation
208(2)
4.3.3 GC-VUV Applications
210(4)
4.3.4 GC-VUV Conclusions
214(1)
References
215(10)
5 Liquid Chromatography: Applications for the Oil and Gas Industry
225(34)
Denice van Herwerden
Bob W. J. Pirok
Peter J. Schoenmakers
5.1 Introduction
225(3)
5.1.1 Petroleum Industry
225(1)
5.1.2 Introduction to Liquid Chromatography
226(2)
5.2 Group-Type Separations
228(5)
5.2.1 Group-Type Separations of Heavy Distillates
228(4)
5.2.2 Other Group-Type Separations
232(1)
5.3 Molecular-Weight Distribution
233(3)
5.4 Target Analysis
236(9)
5.4.1 Polyaromatic Hydrocarbons
236(4)
5.4.2 Naphthenic Acids
240(4)
5.4.3 Phenols
244(1)
5.5 LC as a Pre-separation Technique for GC Analysis
245(2)
5.6 Conclusions
247(12)
References
248(11)
6 Supercritical Fluids in Chromatography: Applications to the Oil and Gas Industry
259(40)
Didier Thiebaut
Robert M. Campbell
6.1 Introduction
259(1)
6.2 Basics of SFC
260(6)
6.2.1 Packed Column SFC
262(1)
6.2.1.1 Implementation
262(2)
6.2.1.2 Applications of Packed Column SFC
264(1)
6.2.2 Capillary SFC
265(1)
6.3 Simulated Distillation (SIMDIST)
266(4)
6.3.1 Experimental
267(1)
6.3.2 Results
267(3)
6.4 Group-Type and Related Separations
270(3)
6.4.1 Heavy Samples
271(1)
6.4.2 Additives
272(1)
6.5 Detailed Separations
273(26)
6.5.1 Surfactant and Alkoxylate Polymer Analysis by SFC
273(1)
6.5.1.1 Open Tubular Columns
273(1)
6.5.1.2 Packed Capillary Column SFC of Surfactants
274(1)
6.5.2 Packed Column SFC of Surfactants
275(1)
6.5.2.1 Surfactants by Sub-2 urn Particle Packed Column SFC
276(4)
6.5.2.2 Surfactant Characterization by SFC/MS: Software-Assisted Deconvolution of Co-polymers
280(1)
6.5.2.3 C02 Cloud Point Pressures of Non-ionic Surfactants by Capillary and Packed Column SFC
280(1)
6.5.2.4 C02/Water Partition Coefficients by SFC
280(1)
6.5.2.5 SFC of Ionic Surfactants
281(1)
6.5.3 Capillary SFC of Surfactants
281(1)
6.5.3.1 Large Volume Injection in Capillary SFC
281(1)
6.5.3.2 Splitless Injection in Capillary SFC
282(1)
6.5.4 Separations of Polyaromatic Hydrocarbons (PAHs)
283(2)
6.5.5 SFC in Multidimensional Separations
285(1)
6.5.5.1 LCxSFC
285(2)
6.5.5.2 Feasibility of SFC X SFC
287(1)
References
288(11)
7 Online and In Situ Measurements for Environmental Applications in Oil and Gas
299(30)
Eric Schmidt
J.D. Tate
William L. Winniford
Melissa N. Dunkle
7.1 Introduction
299(1)
7.2 Characteristics of On-line Analyzers
300(2)
7.2.1 Zone Classification
300(1)
7.2.2 Sampling Systems
301(1)
7.2.3 Detection
302(1)
7.3 Water Analysis
302(2)
7.3.1 General Water Analysis
302(1)
7.3.2 Application: Benzene in Drinking Water
303(1)
7.4 Air Quality and Emissions Monitoring
304(5)
7.4.1 Regulations
305(1)
7.4.1.1 US Air Monitoring
305(1)
7.4.1.2 European Union Air Monitoring
305(2)
7.4.2 Proton Transfer Reaction Mass Spectrometry for Emission Monitoring
307(2)
7.5 Sample Conditioning
309(1)
7.6 Well Drilling and Production
309(3)
7.6.1 Well Logging
310(2)
7.6.2 Emissions
312(1)
7.7 Texas Commission on Environmental Quality
312(1)
7.8 Fenceline Monitoring
313(4)
7.9 Pipeline and Fugitive Emission Monitoring with Drones
317(1)
7.10 Types of Continuous Emission Monitors
317(4)
7.10.1 Nondispersive IR (NDIR)
317(2)
7.10.2 UV and Dispersive IR
319(1)
7.10.3 Chemiluminescent NOx/SOx Analyzers
319(1)
7.10.4 TDL Analyzers
320(1)
7.10.5 QCL Analyzers
321(1)
7.11 Portable GCs
321(8)
References
324(5)
Part IV Special Cases and Examples Related to the Petroleum Industry
329(50)
8 Tracers for Oil and Gas Reservoirs
331(16)
William L. Winniford
Melissa N. Dunkle
8.1 Introduction
331(3)
8.2 Types of Tracers
334(7)
8.2.1 Radioactive Water Tracers
334(2)
8.2.2 Radioactive Gas Tracers
336(1)
8.2.3 Radioactive Measurement Techniques
336(2)
8.2.4 Example Studies of Radioactive Tracers
338(1)
8.2.5 Chemical Water Tracers
338(1)
8.2.6 Chemical Gas Tracers
339(1)
8.2.7 Naturally Occurring Tracers
340(1)
8.2.7.1 Isotopes
340(1)
8.2.7.2 Biomarkers
341(1)
8.3 Regulations
341(6)
References
343(4)
9 Environmental Impact of Emissions Originating from the Petroleum Industry
347(32)
Melissa N. Dunkle
William L. Winniford
9.1 Global Warming
347(3)
9.1.1 Causes of Global Warming
347(2)
9.1.2 Combatting Global Warming
349(1)
9.2 Environmental Impact of Diesel Emissions
350(10)
9.2.1 Diesel Engine
350(1)
9.2.2 Diesel Exhaust
350(1)
9.2.3 Diesel Engine Modifications
351(3)
9.2.4 Diesel Fuel Modifications
354(1)
9.2.4.1 Low Sulfur Diesel
355(1)
9.2.4.2 Ultra-Low Sulfur Diesel
355(1)
9.2.4.3 Biodiesel
355(2)
9.2.4.4 Modification of Diesel and Biodiesel with Oxygenates
357(1)
9.2.5 Sulfur Monitoring of Diesel Fuels
358(1)
9.2.6 Monitoring Air Pollution/Haze
359(1)
9.3 Environmental Impact of Fossil Fuel Sourcing and Energy Conversion on Global Warming
360(19)
9.3.1 Coal Mining, Natural Gas Wells, and Methane Release
360(2)
9.3.1.1 Coal Mine Methane
362(1)
9.3.1.2 Natural Gas Methane
363(1)
9.3.2 Fossil Fuel Power Stations
363(1)
9.3.2.1 Coal-Fired Power Station
363(1)
9.3.2.2 Gas-Fired Power Station
364(1)
9.3.3 Emissions from Fossil Fuel Power Stations
364(1)
9.3.3.1 Carbon Dioxide
365(1)
9.3.3.2 Sulfur Dioxide
366(1)
9.3.3.3 Nitrogen Oxides
367(1)
9.3.3 A Particulate Matter (PM)
367(1)
9.3.3.5 Coal Ash and Heavy Metals
368(1)
9.3.4 Wastewater from Fossil Fuel Power Stations
369(2)
9.3.5 Analysis of Ground Water
371(1)
References
371(8)
Part V Environmental Analysis
379(38)
10 Environmental Analysis of Soil, Water, and Air
381(36)
Paige Teehan
Kyra A. Murrell
Romano Jaramillo
A. Paige Wicker
Robert Parette
Kevin A. Schug
Frank L. Dorman
10.1 Water and Soil Monitoring
381(1)
10.2 Total Petroleum Hydrocarbons in Soil
382(7)
10.2.1 Introduction
382(1)
10.2.2 Soil as a Matrix
383(1)
10.2.3 Sample Preparation
383(1)
10.2.3.1 Collection and Preservation
384(1)
10.2.3.2 Extraction
384(1)
10.2.3.3 Concentration
384(1)
10.2.3.4 Cleanup
384(2)
10.2.4 Sample Analysis
386(3)
10.3 Volatile Organic Compound Analysis
389(4)
10.3.1 Introduction
389(1)
10.3.2 Methane Monitoring
389(1)
10.3.2.1 Cavity Ring-Down Laser Spectrometry Techniques
390(1)
10.3.2.2 Mobile Platforms for Bottom-Up Analyses
391(1)
10.3.2.3 Aircraft-Based Top-Down Analysis
392(1)
10.3.3 Non-Methane VOC Monitoring
392(1)
10.3.3.1 Air Sampling
392(1)
10.3.3.2 Analysis of Air Samples
393(1)
10.4 Water Analysis
393(9)
10.4.1 Introduction
393(2)
10.4.2 Sample Preparation
395(2)
10.4.3 Sample Analysis
397(5)
10.5 Portable GCs for Field Monitoring
402(2)
10.5.1 Introduction
402(1)
10.5.2 Analyzing Field Samples
403(1)
10.6 Fingerprinting in the Oil and Gas Industry
404(13)
10.6.1 Introduction
404(1)
10.6.2 Hydrocarbon Fingerprinting
405(1)
10.6.3 Additional Texts on Fingerprinting Oil Spills and Petroleum Products
405(1)
References
406(11)
Part VI Future Trends in the Petroleum Industry
417(16)
11 Future Trends
419(14)
William L. Winniford
Melissa N. Dunkle
11.1 Introduction
419(2)
11.2 Climate Change
421(1)
11.3 Likely Scenarios
422(8)
11.3.1 Gas Emissions
422(3)
11.3.2 Water Emissions
425(2)
11.3.3 Oil Sands
427(1)
11.3.4 Food Contact - MOSH/MOAH
428(1)
11.3.5 Industry 4.0 and the 4th Wave of Environmentalism
428(2)
11.4 Summary
430(3)
References
430(3)
Index 433
MELISSA N. DUNKLE, PHD, is currently an Associate Research Scientist at Dow Benelux in The Netherlands. She focuses on R&D projects to advance analytical capabilities and improve the evaluation of natural gas feedstocks.



WILLIAM L. WINNIFORD, PHD, is currently a Fellow at The Dow Chemical Company in Freeport, Texas. His primary field of research is analytical separations, currently focused on comprehensive two-dimensional chromatography.