Preface |
|
ix | |
|
|
1 | (16) |
|
1.1 Electrical Communication |
|
|
2 | (2) |
|
|
4 | (5) |
|
|
9 | (4) |
|
1.4 Coding Versus Modulation |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (2) |
|
|
16 | (1) |
|
2 Communication Theory Foundation |
|
|
17 | (41) |
|
|
18 | (6) |
|
|
24 | (11) |
|
2.2.1 Orthogonal Modulator Detection |
|
|
24 | (5) |
|
|
29 | (6) |
|
|
35 | (2) |
|
2.4 Signal Phases and Channel Models |
|
|
37 | (6) |
|
|
43 | (7) |
|
2.5.1 Error Events and dmin |
|
|
43 | (5) |
|
2.5.2 Error Fourier Spectra |
|
|
48 | (2) |
|
|
50 | (8) |
|
Appendix 2A Calculating Minimum Distance |
|
|
50 | (6) |
|
|
56 | (2) |
|
3 Gaussian Channel Capacity |
|
|
58 | (21) |
|
3.1 Classical Channel Capacity |
|
|
59 | (5) |
|
3.2 Capacity for an Error Rate and Spectrum |
|
|
64 | (4) |
|
3.3 Linear Modulation Capacity |
|
|
68 | (4) |
|
|
72 | (7) |
|
Appendix 3A Calculating Shannon Limits |
|
|
73 | (4) |
|
|
77 | (2) |
|
4 Faster than Nyquist Signaling |
|
|
79 | (48) |
|
|
80 | (7) |
|
|
80 | (1) |
|
4.1.2 Definition of FTN Signaling |
|
|
81 | (5) |
|
4.1.3 Discrete-Time Models |
|
|
86 | (1) |
|
4.2 Reduced ISI-BCJR Algorithms |
|
|
87 | (14) |
|
4.2.1 Reduced Trellis Methods: The Tail Offset BCJR |
|
|
89 | (4) |
|
4.2.2 Reduced-Search Methods: The M-BCJR |
|
|
93 | (6) |
|
4.2.3 The ISI Characteristic |
|
|
99 | (2) |
|
4.3 Good Convolutional Codes |
|
|
101 | (9) |
|
4.3.1 Binary CC Slope Analysis |
|
|
102 | (3) |
|
4.3.2 Good Binary Modulation Codes |
|
|
105 | (2) |
|
4.3.3 Good Convolutional Codes for 4-ary Modulation |
|
|
107 | (3) |
|
4.4 Iterative Decoding Results |
|
|
110 | (4) |
|
|
114 | (13) |
|
Appendix 4A Super Minimum-Phase FTN Models |
|
|
115 | (1) |
|
Appendix 4B Good Convolutional Codes for FTN Signaling |
|
|
116 | (8) |
|
|
124 | (3) |
|
|
127 | (18) |
|
5.1 Classical Multicarrier FTN |
|
|
128 | (6) |
|
|
134 | (4) |
|
|
134 | (2) |
|
5.2.2 Minimum Distances and the Mazo Limit |
|
|
136 | (2) |
|
5.3 Alternative Methods and Implementations |
|
|
138 | (5) |
|
|
143 | (2) |
|
|
143 | (2) |
|
6 Coded Modulation Performance |
|
|
145 | (18) |
|
|
146 | (7) |
|
6.1.1 Set-Partition Basics |
|
|
146 | (4) |
|
6.1.2 Shannon Limit and Coding Performance |
|
|
150 | (3) |
|
6.2 Continuous Phase Modulation |
|
|
153 | (8) |
|
|
153 | (4) |
|
6.2.2 Bits per Hz-s and the Shannon Limit in CPM |
|
|
157 | (1) |
|
6.2.3 Error Performance of CPM |
|
|
158 | (3) |
|
6.3 Conclusions for Coded Modulation; Highlights |
|
|
161 | (2) |
|
|
161 | (2) |
|
7 Optimal Modulation Pulses |
|
|
163 | (25) |
|
|
164 | (13) |
|
7.1.1 PSWF Pulse Solution |
|
|
165 | (4) |
|
7.1.2 Gauss and Gauss-Like Pulses |
|
|
169 | (3) |
|
7.1.3 Occupancy of Linear Modulation with FTN |
|
|
172 | (3) |
|
7.1.4 PSWF and Gauss Linear Modulation with FTN |
|
|
175 | (2) |
|
7.2 Said's Optimum Distance Pulses |
|
|
177 | (8) |
|
7.2.1 Linear Programming Solution |
|
|
178 | (2) |
|
7.2.2 Optimal Modulation Tap Sets |
|
|
180 | (2) |
|
7.2.3 Coded and Uncoded Error Performance |
|
|
182 | (3) |
|
|
185 | (3) |
|
Appendix 7A Calculating the PSWF |
|
|
185 | (3) |
|
Appendix 7B Optimum Distance Tap Sets |
|
|
188 | (1) |
References |
|
188 | (2) |
Index |
|
190 | |