Muutke küpsiste eelistusi
  • Taylor & Francis e-raamat
  • Hind: 207,73 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 296,75 €
  • Säästad 30%

This book discusses in detail the important components of battery development, such as electrodes, electrolytes, active materials, and battery construction. It starts with the advantages and limitations of the hallmark lithium-ion batteries, evolving to the introduction of other metal-based batteries.



Immense efforts are being made to develop efficient energy-storage devices to cater the constantly increasing energy demand due to population growth. Research is being carried out to explore the various aspects of batteries to increase their energy density, charge storage, and stability. This book discusses in detail the important components of battery development, such as electrodes, electrolytes, active materials, and battery construction. It starts with the advantages and limitations of the hallmark lithium-ion batteries, evolving to the introduction of other metal-based batteries such as zinc-, sodium-, metal–air-, and magnesium-based batteries. It specifically reviews lithium–sulfur batteries, which can produce high energy densities. It subsequently discusses the physics behind transport dynamics of solid-state polymer electrolytes. It includes redox-active materials, mainly polymers and organic molecules, for a further understanding and expanding the options of battery development. It finally analyzes the high dependence of the current technology of batteries on the combination of battery design aspects and renewable electricity sources, which has resulted in regenerative flow batteries. With chapters written by experts in the field, the book covers the recent advances that will be of interest to academics and researchers in the field of energy storage, electrochemistry, materials development, and sustainable chemistry.

1. Advancements in Battery Technology: Beyond Lithium-Ion Batteries
2.
Cathode Materials for LithiumSulfur Batteries: Fundamentals, Challenges, and
Solutions
3. Dielectric Relaxation and Transport Dynamics of Solid-State
Polymer Electrolytes
4. Organic-Based Batteries for the Future of Energy
Storage
5. Regenerative Fuel Cells
Subashani Maniam is a senior lecturer at RMIT University, Australia. She obtained her PhD from the Australian National University (2008) in supramolecular chemistry under the supervision of Prof. Christopher Easton. She had a joint postdoctoral fellowship from the University of Melbourne and Commonwealth Scientific and Industrial Research Organisation (CSIRO) (20082011) under the mentorship of Prof. Andrew Holmes and Dr Gavin Collis during which she worked on dye-sensitized solar cells. She has worked at Monash University with Prof. Langford, exploring naphthalene diimides- and porphyrin-based photosystems. Her current research focuses on the development of materials for charge-storage devices, in particular, redox-flow batteries.