|
|
xiii | |
|
List of Figures/Illustrations |
|
|
xv | |
Foreword |
|
xvii | |
Preface |
|
xix | |
Acknowledgements |
|
xxiii | |
Author |
|
xxv | |
|
Chapter 1 Introduction to Big Data |
|
|
1 | (8) |
|
|
1 | (1) |
|
|
1 | (2) |
|
|
3 | (1) |
|
|
4 | (1) |
|
Business Value of Big Data |
|
|
5 | (4) |
|
Chapter 2 Big Data Implementation |
|
|
9 | (24) |
|
|
9 | (1) |
|
High-Level Tasks to Implement Informatica Bdm, Cloudera Hive, and Tableau |
|
|
10 | (1) |
|
Big Data Triggers Digital Transformation of the Production Model |
|
|
11 | (2) |
|
Big Data Challenges and Associated Use Cases |
|
|
13 | (1) |
|
Hadoop Infrastructure: Overview |
|
|
14 | (1) |
|
Hadoop Infrastructure: Defined |
|
|
15 | (5) |
|
Hyperconverged Hadoop Infrastructure |
|
|
15 | (1) |
|
Compute Hardware Components |
|
|
16 | (1) |
|
Network Hardware Components |
|
|
17 | (2) |
|
Storage Hardware Architecture and Components |
|
|
19 | (1) |
|
|
20 | (2) |
|
|
22 | (1) |
|
Hadoop Distributed File Processing |
|
|
22 | (4) |
|
|
26 | (1) |
|
Mapreduce Software Installation |
|
|
27 | (1) |
|
|
28 | (5) |
|
Chapter 3 Big Data Use Cases |
|
|
33 | (6) |
|
|
33 | (1) |
|
Big Data Use Case: Health |
|
|
33 | (2) |
|
Big Data Use Case: Manufacturing |
|
|
35 | (1) |
|
Big Data Use Case: Insurance |
|
|
36 | (3) |
|
Chapter 4 Big Data Migration |
|
|
39 | (10) |
|
|
39 | (2) |
|
Challenges In Migrating Oracle Data Using Sqoop |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
42 | (1) |
|
Hive Arguments Used By Sqoop |
|
|
43 | (1) |
|
Apache Sqoop Architecture |
|
|
44 | (1) |
|
Apache Sqoop Command Line Interface |
|
|
45 | (4) |
|
Chapter 5 Big Data Ingestion, Integration, and Management |
|
|
49 | (10) |
|
|
49 | (1) |
|
Informatica: Mature and Comprehensive Big Data Solution |
|
|
50 | (2) |
|
Informatica Data Integration |
|
|
52 | (7) |
|
Chapter 6 Big Data Repository |
|
|
59 | (16) |
|
|
59 | (2) |
|
|
61 | (1) |
|
|
62 | (1) |
|
Slowly Changing Dimension In Hive |
|
|
63 | (2) |
|
Hive Metadata: Definitions |
|
|
65 | (7) |
|
Integrated Use Of Data Integration, Data Management, and Data Visualization Tools |
|
|
72 | (3) |
|
Chapter 7 Big Data Visualization |
|
|
75 | (28) |
|
|
75 | (8) |
|
|
83 | (4) |
|
|
83 | (2) |
|
|
85 | (1) |
|
|
86 | (1) |
|
Success Factors For Tableau |
|
|
87 | (1) |
|
Tableau: Step Forward In Data Analytics |
|
|
88 | (5) |
|
Tableau Connectors For Data Sources |
|
|
93 | (1) |
|
Tableau Data Engine Tuning |
|
|
93 | (7) |
|
|
100 | (3) |
|
Fast Interactive Query Engine |
|
|
100 | (1) |
|
Strategically Utilize Live Connections Versus Extracts |
|
|
100 | (1) |
|
Curate Data From The Data Lake |
|
|
100 | (1) |
|
|
101 | (1) |
|
Customize Tableau Connection Performance |
|
|
102 | (1) |
|
Chapter 8 Structured and Un-Structured Data Analytics |
|
|
103 | (12) |
|
|
103 | (1) |
|
Text Analytics As Means To Extract Value From Un-Structured Data |
|
|
104 | (1) |
|
Major Players In Text Analytics |
|
|
105 | (2) |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
106 | (1) |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
107 | (7) |
|
|
114 | (1) |
|
Chapter 9 Data Virtualization |
|
|
115 | (22) |
|
|
115 | (22) |
|
Conclusion: Flexibility and Agility |
|
|
123 | (1) |
|
Pre-Installation Steps To Set Up Denodo Development Environment |
|
|
124 | (12) |
|
|
136 | (1) |
|
Chapter 10 Cloud Computing |
|
|
137 | (16) |
|
|
137 | (2) |
|
A Quick Glance At Cloud Computing |
|
|
139 | (2) |
|
Software As A Service (Saas) |
|
|
139 | (1) |
|
Platform As A Service (Paas) |
|
|
139 | (1) |
|
Infrastructure as a Service (Iaas) |
|
|
140 | (1) |
|
Cloud Computing Versus Hadoop Processing |
|
|
141 | (1) |
|
Cloud Service Most Suited For Big Data |
|
|
142 | (1) |
|
Infrastructure As A Service (Iaas) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
143 | (2) |
|
|
145 | (8) |
Answers To The Self-Assessment Quiz |
|
153 | (10) |
References |
|
163 | (4) |
Index |
|
167 | |