Muutke küpsiste eelistusi

E-raamat: Blast and Ballistic Loading of Structures [Taylor & Francis e-raamat]

(RMCS Shrivenham, UK), (Formerly, RMCS Shrivenham, UK)
  • Formaat: 336 pages
  • Ilmumisaeg: 12-Dec-2019
  • Kirjastus: CRC Press
  • ISBN-13: 9780429077982
  • Taylor & Francis e-raamat
  • Hind: 281,59 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 402,26 €
  • Säästad 30%
  • Formaat: 336 pages
  • Ilmumisaeg: 12-Dec-2019
  • Kirjastus: CRC Press
  • ISBN-13: 9780429077982
This book brings together, in a concise format, the key elements of the loads produced from explosive sources, and how they interact with structures. Explosive sources include gas, high explosives, dust and nuclear materials.
It presents quantitative information and design methods in a useable form without recourse to extensive mathematical analysis. The authors, Peter Smith and John Hetherington, are staff members at the Royal Military College of Science in Shrivenham and have been instrumental in establishing an active team studying the response of structures to blast and ballistic loading.
Preface xi
1 Introduction
1(5)
1.1 Basic concepts of protection
1(1)
1.2 Protective design
1(3)
1.2.1 Materials of construction
3(1)
1.2.2 Vehicle and package bombs
3(1)
1.2.3 The ballistic threat
4(1)
1.3 Detailed examination of the effects - the scope of this book
4(2)
2 Introduction to explosives
6(18)
2.1 Explosions
6(1)
2.2 Thermodynamics of explosions
7(1)
2.3 Mixtures and compounds
8(3)
2.3.1 Explosive mixtures
8(1)
2.3.2 Explosive compounds
9(2)
2.4 Oxygen balance
11(1)
2.5 Explosion processes
12(6)
2.5.1 Terminology
12(1)
2.5.2 Transition to detonation
13(1)
2.5.3 Detonation
14(3)
2.5.4 Velocity of detonation
17(1)
2.6 Explosives classification
18(1)
2.7 Initiation
18(2)
2.8 Effects of explosives
20(2)
2.9 References
22(2)
Symbols
22(2)
3 Blast waves and blast loading
24(39)
3.1 Introduction
24(1)
3.2 Blast waves in air from condensed high explosives
24(1)
3.3 Blast wave equations for spherical charges of condensed high explosive
25(5)
3.3.1 Inside the charge
25(3)
3.3.2 Outside the charge
28(2)
3.4 Blast wavefront parameters
30(4)
3.5 Other important blast wave parameters
34(2)
3.6 Blast wave scaling laws
36(5)
3.7 Surface bursts (Ex 3.1)
41(1)
3.8 Blast wave pressure profiles
42(2)
3.9 Blast wave interactions
44(7)
3.9.1 Regular and Mach reflection (Ex 3.2)
47(4)
3.10 Blast wave external loading on structures (Ex 3.3)
51(6)
3.11 Examples of blast effects on structures
57(3)
3.11.1 Terrorist attacks
57(2)
3.11.2 Nuclear attacks
59(1)
3.11.3 Simulations
59(1)
3.12 References
60(3)
Symbols
60(3)
4 Internal blast loading
63(26)
4.1 Flame propagation in gas-air mixtures
63(2)
4.2 The effect of flame area
65(1)
4.3 Detonation
66(1)
4.3.1 Turbulence increase
66(1)
4.3.2 Booster charges
67(1)
4.4 TNT equivalence
67(2)
4.5 Internal blast loading of structures
69(17)
4.5.1 Internal loading by condensed high explosives
69(9)
4.5.2 Internal loading by dust and gas explosions
78(8)
4.6 References
86(3)
Symbols
87(2)
5 Underwater explosions
89(15)
5.1 Introduction
89(1)
5.2 Underwater shock-wave details (Ex 5.1)
89(5)
5.3 Bubble parameter details
94(3)
5.4 Partition of energy
97(1)
5.5 Surface and sea-bed interactions
97(5)
5.6 Further reading
102(1)
5.7 References
102(2)
Symbols
102(2)
6 Stress waves
104(9)
6.1 Introduction
104(1)
6.2 Stress wave parameters
105(4)
6.2.1 Propagation velocity
107(2)
6.2.2 Particle velocity
109(1)
6.3 Reflection and transmission of stress waves
109(3)
6.3.1 Reflection and transmission at an interface between two dissimilar materials (Ex 6.1)
110(2)
6.32 Reflection and trarismission at a change of area (Ex 62)
112(1)
633 Reflection and transmission at an interface with change of area and change of material
113(11)
6.3.4 Design of protective systems (Ex 6.3)
114(1)
6.4 X,T diagrams (Ex 6.4)
115(2)
6.5 Plastic stress waves
117(1)
65.1 Reflection and transmission of plastic waves (Ex 65)
117(7)
Symbols
123(1)
7 Groundshock
124(21)
7.1 Introduction
124(1)
7.2 Characterisation of groundshock
124(4)
7.3 Quantification of groundshock parameters
128(1)
7.4 SHM analogy (Ex 7.1)
129(1)
7.5 Groundshock predictions
130(6)
7.5.1 Peak particle displacement
131(1)
7.5.2 Peak particle velocity
131(1)
7.5.3 Free field stress
131(1)
7.5.4 Free field impulse
132(1)
7.5.5 Attenuation coefficient
132(1)
7.5.6 Coupling factor
133(1)
7.5.7 Westine's method (Ex 7.2)
134(2)
7.6 Groundshock loading of structures
136(3)
7.7 In-structure shock
139(2)
7.7.1 Wall and floor motions
139(1)
7.7.2 Equipment motions
140(1)
7.7.3 Assessing potential damage
140(1)
7.8 Transmission and reflection (Ex 7.3)
141(1)
7.9 Concluding remarks
142(1)
7.10 References
143(1)
7.11 Bibliography
143(2)
Symbols
143(2)
8 Structural response: principles
145(17)
8.1 Introduction
145(1)
8.2 Structural vibrations
145(1)
8.3 Single degree of freedom systems
146(1)
8.4 Free vibration
147(1)
8.5 Damped vibration: c finite
147(3)
8.6 Forced vibration of undamped structures (c = 0)
150(6)
8.7 Forced vibration of damped system (c finite)
156(1)
8.8 Resonance of a damped and undamped structure (Ex 8.1, 82)
157(4)
8.9 References
161(1)
Symbols
161(1)
9 Structural response: pressure-impulse diagrams
162(29)
9.1 Introduction
162(1)
9.2 Rigid target elastically supported
162(2)
9.3 Positive phase duration and natural period
164(2)
9.3.1 Positive phase long compared with natural period
164(1)
9.3.2 Positive phase short compared with natural period
165(1)
9.3.3 Positive phase duration and natural period similar
165(1)
9.4 Evaluation of the limits of response
166(3)
9.5 Pressure-impulse or iso-damage curves (Ex 9.1)
169(8)
9.6 Pressure-impulse diagrams for gas and dust explosions
177(1)
9.7 Human response to blast loading
178(10)
9.7.1 Lung damage
180(1)
9.7.2 Ear damage
181(4)
9.7.3 Secondary and tertiary injuries (Ex 9.2, 9.3, 9.4)
185(3)
9.8 References
188(3)
Symbols
189(2)
10 Structural response: equivalent systems
191(20)
10.1 Introduction
191(1)
10.2 Energy solutions for specific structural components
191(5)
10.2.1 Elastic analysis (Ex 10.1, 10.2)
191(5)
10.2.2 Influence of deflected shape selection
196(1)
10.3 Plastic analysis (Ex 10.3)
196(3)
10.4 Lumped-mass equivalent single degree of freedom systems
199(10)
10.4.1 Equation of motion for an SDOF system (Ex 10.4)
200(4)
10.4.2 Dynamic reactions (Ex 10.5, 10.6)
204(5)
10.5 Load-mass factor
209(1)
10.6 References
209(2)
Symbols
209(2)
11 Structural response: incremental solution of equation of motion
211(14)
11.1 Introduction
211(1)
11.2 Numerical solution of equations of motion
211(2)
11.3 Resistance term
213(2)
11.4 Resistance function for specific structural forms
215(5)
11.4.1 Resistance functions - general description
215(1)
11.4.2 Quantifying the resistance function
216(2)
11.4.3 Resistance function for unreinforced masonry walls
218(1)
11.4.4 Arching effect in masonry walls
219(1)
11.5 Methods of solution (Ex 11.1)
220(3)
11.6 References
223(2)
Symbols
223(2)
12 Protection against ballistic attack
225(25)
12.1 Introduction
225(1)
12.2 The ballistic threat
225(1)
12.3 Impact regimes
226(1)
12.4 Stress waves, scabbing and spalling
227(1)
12.5 Penetration performance parameters
227(5)
12.5.1 Penetration and perforation
227(1)
12.5.2 Ballistic limit velocity
228(1)
12.5.3 Obliquity and yaw
228(1)
12.5.4 Equivalent protection factors
229(2)
12.5.5 Areal density (Ex 12.1)
231(1)
12.6 Penetration prediction equations
232(13)
12.6.1 Subhydrodynamic regime (Ex 12.2)
232(2)
12.6.2 Hydrodynamic regime (Ex 12.3)
234(4)
12.6.3 Reinforced concrete
238(1)
12.6.4 Soils
238(5)
12.6.5 Composite systems
243(2)
12.7 Numerical methods
245(1)
12.8 Protective strategies
246(2)
12.9 References
248(1)
12.10 Bibliography
248(2)
Symbols
248(2)
13 Buried structures
250(22)
13.1 Introduction
250(1)
13.2 Essential soil mechanics
250(1)
13.3 Concepts of plasticity
251(1)
13.4 Plasticity theory applied to soils (Ex 13.1,13.2)
252(7)
13.5 The limit analysis method of engineering plasticity
259(7)
13.5.1 The lower bound method of analysis
260(2)
13.5.2 The upper bound method of analysis (ex 133)
262(4)
13.6 The limit analysis method applied to buried structures (Ex 13.4)
266(4)
13.7 Blast and ballistic attack of buried structures
270(1)
13.8 Concluding remarks
270(1)
13.9 Bibliography
271(1)
Symbols
271(1)
14 Protective design
272(23)
14.1 An overview of the approach to design
272(1)
14.2 General philosophy of protection
273(1)
14.3 Guidelines for new protective structures
273(3)
14.4 Guidelines for protecting existing structures
276(1)
14.5 The overall cost of protective strengthening
277(2)
14.6 Outline of blast resistant design
279(8)
14.6.1 Reinforced concrete compared with steel
279(3)
14.6.2 Blast resistant design in reinforced concrete (Ex 14.1)
282(5)
14.63 Blast resistant design in structural steel (Ex 142)
287(4)
14.7 Construction of blast resistant structures
291(1)
14.8 Design codes
292(1)
14.9 References
293(2)
Symbols
294(1)
15 Worked examples
295(18)
15.1 Introduction
295(1)
15.2 Explosives
295(1)
15.3 Blast waves and blast loading
296(4)
15.4 Underwater explosions
300(2)
15.5 Structural response
302(4)
15.6 Stress waves
306(2)
15.7 Ballistic penetration
308(2)
15.8 Buried structures
310(3)
Index 313
P. D. Smith is Senior Lecturer at Civil Engineering Group, Cranfield University, Royal Military College of Science.

J. G. Hetherington is Head of Design Group, Cranfield University, Royal Military College of Science.