Muutke küpsiste eelistusi

E-raamat: Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology 2nd edition [Taylor & Francis e-raamat]

Edited by (Universitaat Autònoma de Barcelona, Bellaterra, Spain), Edited by (Universitat Autònoma de Barcelona, Bellaterra, Spain)
  • Formaat: 700 pages, 4 Tables, black and white
  • Ilmumisaeg: 16-May-2019
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9780429294747
  • Taylor & Francis e-raamat
  • Hind: 175,41 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 250,59 €
  • Säästad 30%
  • Formaat: 700 pages, 4 Tables, black and white
  • Ilmumisaeg: 16-May-2019
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9780429294747
Most textbooks explain quantum mechanics as a story where each step follows naturally from the one preceding it. However, the development of quantum mechanics was exactly the opposite. It was a zigzag route, full of personal disputes where scientists were forced to abandon well-established classical concepts and to explore new and imaginative pathways. Some of the explored routes were successful in providing new mathematical formalisms capable of predicting experiments at the atomic scale. However, even such successful routes were painful enough, so that relevant scientists like Albert Einstein and Erwin Schrödinger decided not to support them.

In this book, the authors demonstrate the huge practical utility of another of these routes in explaining quantum phenomena in many different research fields. Bohmian mechanics, the formulation of the quantum theory pioneered by Louis de Broglie and David Bohm, offers an alternative mathematical formulation of quantum phenomena in terms of quantum trajectories. Novel computational tools to explore physical scenarios that are currently computationally inaccessible, such as many-particle solutions of the Schrödinger equation, can be developed from it.
Foreword to the First Edition xvii
Preface to the Second Edition xix
Preface to the First Edition xxiii
Introduction 1(18)
1 Overview of Bohmian Mechanics 19(148)
Xavier Oriols
Jordi Mompart
1.1 Historical Development of Bohmian Mechanics
20(19)
1.1.1 Particles and Waves
20(2)
1.1.2 Origins of the Quantum Theory
22(2)
1.1.3 "Wave or Particle?" vs. "Wave and Particle"
24(5)
1.1.4 Louis de Broglie and the Fifth Solvay Conference
29(1)
1.1.5 Albert Einstein and Locality
29(2)
1.1.6 David Bohm and Why the "Impossibility Proofs" were Wrong?
31(4)
1.1.7 John Bell and Nonlocality
35(2)
1.1.8 Quantum Hydrodynamics
37(1)
1.1.9 Is Bohmian Mechanics a Useful Theory?
38(1)
1.2 Bohmian Mechanics for a Single Particle
39(24)
1.2.1 Preliminary Discussions
40(1)
1.2.2 Creating a Wave Equation for Classical Mechanics
41(8)
1.2.2.1 Newton's second law
41(1)
1.2.2.2 Hamilton's principle
41(2)
1.2.2.3 Lagrange's equation
43(1)
1.2.2.4 Equation for an (infinite) ensemble of trajectories
44(3)
1.2.2.5 Classical Hamilton-Jacobi equation
47(1)
1.2.2.6 Local continuity equation for an (infinite) ensemble of classical particles
47(1)
1.2.2.7 Classical wave equation
48(1)
1.2.3 Trajectories for Quantum Systems
49(5)
1.2.3.1 Schrodinger equation
49(1)
1.2.3.2 Local conservation law for an (infinite) ensemble of quantum trajectories
50(1)
1.2.3.3 Velocity of Bohmian particles
51(1)
1.2.3.4 Quantum Hamilton-Jacobi equation
51(2)
1.2.3.5 A quantum Newton-like equation
53(1)
1.2.4 Similarities and Differences between Classical and Quantum Mechanics
54(4)
1.2.5 Feynman Paths
58(2)
1.2.6 Basic Postulates for a Single-Particle
60(3)
1.3 Bohmian Mechanics for Many-Particle Systems
63(30)
1.3.1 Preliminary Discussions: The Many Body Problem
63(3)
1.3.2 Many-Particle Quantum Trajectories
66(2)
1.3.2.1 Many-particle continuity equation
66(1)
1.3.2.2 Many-particle quantum Hamilton-Jacobi equation
67(1)
1.3.3 Factorizability, Entanglement, and Correlations
68(3)
1.3.4 Spin and Identical Particles
71(5)
1.3.4.1 Single-particle with s = 1/2
71(3)
1.3.4.2 Many-particle system with s = 1/2 particles
74(2)
1.3.5 Basic Postulates for Many-Particle Systems
76(3)
1.3.6 The Conditional Wave Function: Many-Particle Bohmian Trajectories without the Many-Particle Wave Function
79(14)
1.3.6.1 Single-particle pseudo-Schrodinger equation for many-particle systems
81(3)
1.3.6.2 Example: Application in factorizable many-particle systems
84(1)
1.3.6.3 Example: Application in interacting many-particle systems without exchange interaction
85(2)
1.3.6.4 Example: Application in interacting many-particle systems with exchange interaction
87(6)
1.4 Bohmian Explanation of the Measurement Process
93(27)
1.4.1 The Measurement Problem
93(6)
1.4.1.1 The orthodox measurement process
95(3)
1.4.1.2 The Bohmian measurement process
98(1)
1.4.2 Theory of the Bohmian Measurement Process
99(15)
1.4.2.1 Example: Bohmian measurement of the momentum
106(2)
1.4.2.2 Example: Sequential Bohmian measurement of the transmitted and reflected particles
108(6)
1.4.3 The Evaluation of a Mean Value in Terms of Hermitian Operators
114(21)
1.4.3.1 Why Hermitian operators in Bohmian mechanics?
114(1)
1.4.3.2 Mean value from the list of outcomes and their probabilities
115(1)
1.4.3.3 Mean value from the wave function and the operators
116(1)
1.4.3.4 Mean value from Bohmian mechanics in the position representation
116(1)
1.4.3.5 Mean value from Bohmian trajectories
117(2)
1.4.3.6 On the meaning of local Bohmian operators AB(x)
119(1)
1.5 Concluding Remarks
120(2)
1.6 Problems and Solutions
122(13)
A.1 Appendix: Numerical Algorithms for the Computation of Bohmian Mechanics
135(33)
A.1.1 Analytical Computation of Bohmian Trajectories
138(11)
A.1.1.1 Time-dependent Schrodinger equation for a 1D space (TDSE1D-BT) with an explicit method
138(4)
A.1.1.2 Time-independent Schrodinger equation for a 1D space (TISE1D) with an implicit (matrix inversion) method
142(3)
A.1.1.3 Time-independent Schrodinger equation for a 1D space (TISE1D) with an explicit method
145(4)
A.1.2 Synthetic Computation of Bohmian Trajectories
149(6)
A.1.2.1 Time-dependent quantum Hamilton-Jacobi equations (TDQHJE1D) with an implicit (Newton-like fixed Eulerian mesh) method
150(3)
A.1.2.2 Time-dependent quantum Hamilton-Jacobi equations (TDQHJE1D) with an explicit (Lagrangian mesh) method
153(2)
A.1.3 More Elaborated Algorithms
155(12)
2 Hydrogen Photoionization with Strong Lasers 167(44)
Albert Benseny
Antonio Picon
Jordi Mompart
Luis Plaja
Luis Roso
2.1 Introduction
168(6)
2.1.1 A Brief Overview of Photoionization
168(2)
2.1.2 The Computational Problem of Photoionization
170(1)
2.1.3 Photoionization with Bohmian Trajectories
171(3)
2.2 One-Dimensional Photoionization of Hydrogen
174(13)
2.2.1 The Physical Model
174(3)
2.2.2 Harmonic Generation
177(5)
2.2.3 Above Threshold Ionization
182(5)
2.3 Hydrogen Photoionization with Beams Carrying Orbital Angular Momentum
187(15)
2.3.1 Physical System
187(4)
2.3.2 Bohmian Equations in an Electromagnetic Field
191(1)
2.3.3 Selection Rules
192(1)
2.3.4 Numerical Simulations
193(19)
2.3.4.1 Gaussian pulses
194(2)
2.3.4.2 Laguerre-Gaussian pulses
196(6)
2.4 Conclusions
202(9)
3 Atomtronics: Coherent Control of Atomic Flow via Adiabatic Passage 211(46)
Albert Benseny
Joan Baguda
Xavier Oriols
Gerhard Birkl
Jordi Mompart
3.1 Introduction
212(8)
3.1.1 Atomtronics
212(1)
3.1.2 Three-Level Atom Optics
213(3)
3.1.3 Adiabatic Transport with Trajectories
216(4)
3.2 Physical System: Neutral Atoms in Optical Microtraps
220(2)
3.2.1 One-Dimensional Hamiltonian
221(1)
3.3 Adiabatic Transport of a Single Atom
222(6)
3.3.1 The Matter Wave STIRAP Paradox with Bohmian Trajectories
222(2)
3.3.2 Velocities and Accelerations of Bohmian Trajectories
224(4)
3.4 Adiabatic Transport of a Single Hole
228(14)
3.4.1 Hole Transfer as an Array-Cleaning Technique
228(1)
3.4.2 Adiabatic Transport of a Hole in an Array of Three Traps
229(3)
3.4.2.1 Three-level approximation description
229(3)
3.4.2.2 Numerical simulations
232(1)
3.4.3 Hole Transport Fidelity
232(3)
3.4.4 Bohmian Trajectories for the Hole Transport
235(1)
3.4.5 Atomtronics with Holes
235(7)
3.4.5.1 Single-hole diode
236(3)
3.4.5.2 Single-hole transistor
239(3)
3.5 Adiabatic Transport of a Bose-Einstein Condensate
242(6)
3.5.1 Madelung Hydrodynamic Formulation
244(1)
3.5.2 Numerical Simulations
244(4)
3.6 Conclusions
248(9)
4 Bohmian Pathways into Chemistry: A Brief Overview 257(74)
Angel S. Sanz
4.1 Introduction
258(5)
4.2 Approaching Molecular Systems at Different Levels
263(14)
4.2.1 The Born-Oppenheimer Approximation
264(4)
4.2.2 Electronic Configuration
268(3)
4.2.3 Dynamics of "Small" Molecular Systems
271(3)
4.2.4 Statistical Approach to Large (Complex) Molecular Systems
274(3)
4.3 Bohmian Mechanics
277(11)
4.3.1 Fundamentals
277(5)
4.3.2 Nonlocality and Entanglement
282(3)
4.3.3 Weak Values and Equations of Change
285(3)
4.4 Applications
288(21)
4.4.1 Time-Dependent DFT: The Quantum Hydrodynamic Route
288(5)
4.4.2 Bound System Dynamics: Chemical Reactivity
293(8)
4.4.3 Scattering Dynamics: Young's Two-Slit Experiment
301(4)
4.4.4 Effective Dynamical Treatments: Decoherence and Reduced Bohmian Trajectories
305(1)
4.4.5 Pathways to Complex Molecular Systems: Mixed Bohmian-Classical Mechanics
306(3)
4.5 Concluding Remarks
309(22)
5 Adaptive Quantum Monte Carlo Approach States for High-Dimensional Systems 331(68)
Eric R. Bittner
Donald J. Kouri
Sean Derrickson
Jeremy B. Maddox
5.1 Introduction
332(1)
5.2 Mixture Modeling Approach
333(23)
5.2.1 Motivation for a Trajectory-Based Approach
334(7)
5.2.1.1 Bohmian interpretation
336(2)
5.2.1.2 Quantum hydrodynamic trajectories
338(1)
5.2.1.3 Computational considerations
339(2)
5.2.2 Density Estimation
341(5)
5.2.2.1 The mixture model
341(2)
5.2.2.2 Expectation maximization
343(3)
5.2.3 Computational Results
346(6)
5.2.3.1 Bivariate distribution with multiple nonseparable Gaussian components
346(6)
5.2.4 The Ground State of Methyl Iodide
352(4)
5.3 Quantum Effects in Atomic Clusters at Finite Temperature
356(1)
5.4 Quantum Structures at Zero and Finite Temperature
357(21)
5.4.1 Zero Temperature Theory
357(2)
5.4.2 Finite Temperature Theory
359(6)
5.4.2.1 Computational approach: The mixture model
362(2)
5.4.2.2 Computational approach: Equations of motion for the sample points
364(1)
5.4.3 Computational Studies
365(13)
5.4.3.1 Zero temperature results
365(5)
5.4.3.2 Finite temperature results
370(8)
5.5 Overcoming the Node Problem
378(10)
5.5.1 Supersymmetric Quantum Mechanics
380(2)
5.5.2 Implementation of SUSY QM in an Adaptive Monte Carlo Scheme
382(1)
5.5.3 Test Case: Tunneling in a Double-Well Potential
383(4)
5.5.4 Extension to Higher Dimensions
387(15)
5.5.4.1 Discussion
388(1)
5.6 Summary
388(11)
6 Nanoelectronics: Quantum Electron Transport 399(64)
Enrique Colomes
Guillermo Albareda
Zhen Zhan
Devashish Pandey
Alfonso Alarcon
Fabio Traversa
Xavier Oriols
6.1 Introduction: From Electronics to Nanoelectronics
400(2)
6.2 Evaluation of the Electrical Current and Its Fluctuations
402(15)
6.2.1 Bohmian Measurement of the Current as a Function of the Particle Positions
403(8)
6.2.1.1 Relationship between current in the ammeter Iammeter,g(t) and the current in the device-active region Ig(t)
405(1)
6.2.1.2 Relationship between the current on the device-active region Ig(t) and the Bohmian trajectories {r1,g[ t],..., rMp,g,[ t]}
406(2)
6.2.1.3 Reducing the number of degrees of freedom of the whole circuit
408(3)
6.2.2 Practical Computation of DC, AC, and Transient Currents
411(2)
6.2.3 Practical Computation of Current Fluctuations and Higher Moments
413(4)
6.2.3.1 Thermal and shot noise
414(1)
6.2.3.2 Practical computation of current fluctuations
415(2)
6.3 Solving Many-Particle Systems with Bohmian Trajectories
417(5)
6.3.1 Coulomb Interaction Among Electrons
417(2)
6.3.2 Exchange and Coulomb Interaction Among Electrons
419(3)
6.3.2.1 Algorithm for spinless electrons
420(1)
6.3.2.2 Algorithm for electrons with spins in arbitrary directions
421(1)
6.4 Dissipation with Bohmian Mechanics
422(3)
6.4.1 Parabolic Band Structures: Pseudo Schrodinger Equation
423(1)
6.4.2 Linear Band Structures: Pseudo Dirac Equation
424(1)
6.5 The BITLLES Simulator
425(7)
6.5.1 Overall Charge Neutrality and Current Conservation
425(3)
6.5.1.1 The Poisson equation in the simulation box
426(1)
6.5.1.2 Time-dependent boundary conditions for the Poisson equation
427(1)
6.5.2 Practical Computation of Time-Dependent Electrical Currents
428(4)
6.5.2.1 The direct method for the computation of the total current
430(1)
6.5.2.2 The Ramo-Shockley-Pellegrini method for the computation of the total current
430(2)
6.6 Application of the BITLLES Simulator to Resonant Tunneling Diodes
432(13)
6.6.1 Device Characteristics and Available Simulation Models
432(3)
6.6.2 Numerical Results
435(10)
6.6.2.1 Coulomb interaction in DC scenarios
435(1)
6.6.2.2 Coulomb interaction in high-frequency scenarios
436(5)
6.6.2.3 Current-current correlations
441(2)
6.6.2.4 RTD with dissipation
443(2)
6.7 Application of the BITLLES Simulator to Graphene and 2D Linear Band Structures
445(7)
6.7.1 Bohmian Trajectories for Linear Band Structures
448(1)
6.7.2 Numerical Results
448(4)
6.8 Conclusions
452(11)
7 Beyond the Eikonal Approximation in Classical Optics and Quantum Physics 463(30)
Adriano Orefice
Raffaele Giovanelli
Domenico Ditto
7.1 Introduction
464(2)
7.2 Helmholtz Equation and Geometrical Optics
466(2)
7.3 Beyond the Geometrical Optics Approximation
468(2)
7.4 The Time-Independent Schrodinger Equation
470(2)
7.5 Hamiltonian Description of Quantum Particle Motion
472(1)
7.6 The Unique Dimensionless Hamiltonian System
473(3)
7.7 Wave-Like Features in Hamiltonian Form
476(11)
7.8 Discussion and Conclusions
487(2)
A.1 Appendix: The Paraxial Approach
489(4)
8 Relativistic Quantum Mechanics and Quantum Field Theory 493(52)
Hrvoje Nikolic
8.1 Introduction
494(2)
8.2 Classical Relativistic Mechanics
496(9)
8.2.1 Kinematics
496(2)
8.2.2 Dynamics
498(7)
8.2.2.1 Action and equations of motion
498(3)
8.2.2.2 Canonical momentum and the Hamilton-Jacobi formulation
501(1)
8.2.2.3 Generalization to many particles
502(2)
8.2.2.4 Absolute time
504(1)
8.3 Relativistic Quantum Mechanics
505(17)
8.3.1 Wave Functions and Their Relativistic Probabilistic Interpretation
505(3)
8.3.2 Theory of Quantum Measurements
508(2)
8.3.3 Relativistic Wave Equations
510(9)
8.3.3.1 Single particle without spin
511(1)
8.3.3.2 Many particles without spin
512(1)
8.3.3.3 Single particle with spin 1/2
513(3)
8.3.3.4 Many particles with spin 1/2
516(1)
8.3.3.5 Particles with spin 1
517(2)
8.3.4 Bohmian Interpretation
519(3)
8.4 Quantum Field Theory
522(19)
8.4.1 Main Ideas of QFT and Its Bohmian Interpretation
522(4)
8.4.2 Measurement in QFT as Entanglement with the Environment
526(2)
8.4.3 Free Scalar QFT in the Particle-Position Picture
528(5)
8.4.4 Generalization to Interacting QFT
533(2)
8.4.5 Generalization to Other Types of Particles
535(1)
8.4.6 Probabilistic Interpretation
536(2)
8.4.7 Bohmian Interpretation
538(3)
8.5 Conclusion
541(4)
9 Quantum Accelerating Universe 545(62)
Pedro F Gonzalez-Diaz
Alberto Rozas-Fernandez
9.1 Introduction
546(3)
9.2 The Original Quantum Dark-Energy Model
549(4)
9.3 Relativistic Bohmian Backgrounds
553(7)
9.3.1 The Klein-Gordon Quantum Model
553(1)
9.3.2 Quantum Theory of Special Relativity
554(6)
9.4 Dark Energy Without Dark Energy
560(9)
9.5 Benigner Phantom Cosmology
569(9)
9.5.1 Thermodynamics
569(4)
9.5.2 Violation of Classical NEC
573(1)
9.5.3 Holographic Models
574(3)
9.5.4 Quantum Cosmic Models and Entanglement Entropy
577(1)
9.6 Generalized Cosmic Solutions
578(5)
9.7 Gravitational Waves and Semiclassical Instability
583(4)
9.8 On the Onset of the Cosmic Accelerating Phase
587(7)
9.9 Conclusions and Comments
594(13)
10 Bohmian Quantum Gravity and Cosmology 607(58)
Nelson Pinto-Neto
Ward Struyve
10.1 Introduction
608(2)
10.2 Nonrelativistic Bohmian Mechanics
610(3)
10.3 Canonical Quantum Gravity
613(3)
10.4 Bohmian Canonical Quantum Gravity
616(3)
10.5 Minisuperspace
619(2)
10.6 Space-Time Singularities
621(17)
10.6.1 Minisuperspace: Canonical Scalar Field
622(8)
10.6.1.1 Free massless scalar field
623(2)
10.6.1.2 The exponential potential
625(5)
10.6.2 Minisuperspace: Perfect Fluid
630(4)
10.6.3 Loop Quantum Cosmology
634(4)
10.7 Cosmological Perturbations
638(14)
10.7.1 Cosmological Perturbations in a Quantum Cosmological Background
640(2)
10.7.2 Bunch-Davies Vacuum and Power Spectrum
642(2)
10.7.3 Power Spectrum and Cosmic Microwave Background
644(2)
10.7.4 Quantum-to-Classical Transition in Inflation Theory
646(2)
10.7.5 Observational Aspects for Matter Bounces
648(4)
10.8 Semiclassical Gravity
652(4)
10.9 Conclusion
656(9)
Index 665
Xavier Oriols is an associate professor at the UAB. His research interests range from quantum foundations to practical engineering of electron devices. He is the author or coauthor of more than 140 papers and has developed the quantum electron transport simulator, named BITLLES, based on Bohmian mechanics.

Jordi Mompart, after a postdoctoral stay at the Leibniz Universität Hannover, he became an associate professor at the UAB.