Muutke küpsiste eelistusi

E-raamat: Channel Coding in 5G New Radio [Taylor & Francis e-raamat]

(University of California, Los Angeles, CA, USA University of California, Los Angeles, CA, USA University of California, Los Angeles, CA, USA),
  • Formaat: 308 pages, 33 Tables, black and white; 215 Line drawings, black and white; 1 Halftones, black and white; 216 Illustrations, black and white
  • Ilmumisaeg: 20-Dec-2022
  • Kirjastus: CRC Press
  • ISBN-13: 9781003336174
  • Taylor & Francis e-raamat
  • Hind: 156,95 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 224,21 €
  • Säästad 30%
  • Formaat: 308 pages, 33 Tables, black and white; 215 Line drawings, black and white; 1 Halftones, black and white; 216 Illustrations, black and white
  • Ilmumisaeg: 20-Dec-2022
  • Kirjastus: CRC Press
  • ISBN-13: 9781003336174
This book provides a comprehensive coverage of major channel codes adopted since the 3rd generation of mobile communication. Modulation schemes suitable for 5G mobile communications are also described based on key New Radio application scenarios and performance requirements.

It covers low density parity check (LDPC) codes, Polar codes, tail-biting convolutional codes (TBCC) and Turbo codes. Outer codes and a few advanced coding and modulations are also discussed. In addition, it includes detailed illustration of each channel coding scheme such as the basic code structure, decoding algorithms, performance evaluation and complexity analysis. The book offers insights on why and how channel codes are designed and developed in standardization organizations, which significantly facilitates the reading and understanding of the of 5G channel coding technologies.

Channel Coding in 5G New Radio will be an essential read for researchers and students of digital communications, wireless communications engineers, and those who are interested in mobile communications in general.
Foreword xiii
Preface xv
Authors xvii
Abbreviations xix
Chapter 1 Introduction
1(16)
Yifei Yuan
1.1 Previous Generations Of Mobile Communications
2(3)
1.2 System Requirements Of 5G NR
5(5)
1.2.1 Major Scenarios
5(1)
1.2.2 Key Performance Indicators and Evaluation Methodology
6(3)
1.2.3 Simulation Parameters for Performance Evaluation of Modulation and Coding
9(1)
1.3 Major Types Of Channel Codes
10(4)
1.3.1 LDPC Codes
10(1)
1.3.2 Polar Codes
11(1)
1.3.3 Convolutional Codes
11(1)
1.3.4 Turbo Codes
12(1)
1.3.5 Outer Code
13(1)
1.3.6 Other Advanced Coding Schemes
13(1)
1.4 Motivation And Structure Of This Book
14(3)
References
15(2)
Chapter 2 Low-Density Parity Check (LDPC) Codes
17(94)
Jun Xu
Yifei Yuan
Meiyinc Huang
Liguanc Li
Jin Xu
2.1 Inception And Development Of LDPC
17(2)
2.2 Basic Principle Of LDPC Codes
19(15)
2.2.1 Gallager Codes
19(3)
2.2.2 Regular LDPC and Irregular LDPC
22(2)
2.2.3 Principle of Belief Propagation and Its Application
24(4)
2.2.4 Practical Decoding Algorithms
28(3)
2.2.5 Theoretical Analysis of Performance
31(3)
2.3 QUASI-CYCLIC LDPC (QC-LDPC)
34(23)
2.3.1 Matrix Lifting
36(6)
2.3.2 Basic Structure of Base Matrix
42(2)
2.3.3 Encoding Algorithms
44(3)
2.3.4 QC-LDPC Design for Flexible Block Length
47(3)
2.3.5 Multi-Code Rate Design for QC-LDPC
50(1)
2.3.6 Fine Adjustment of Code Rate for QC-LDPC
51(1)
2.3.7 Short Cyclic Structures in LDPC
52(1)
2.3.8 Short Cycle Characteristics of QC-LDPC
53(4)
2.4 Decoder Structures Of QC-LDPC
57(10)
2.4.1 Full-Parallel Decoding
58(3)
2.4.2 Row-Parallel Decoding
61(4)
2.4.3 Block-Parallel Decoding
65(2)
2.5 Standardization Of LDPC Codes IN 5G NR
67(27)
2.5.1 Design of Lifting Factors
67(3)
2.5.2 Design of Compact Base Matrix (Base Graph)
70(2)
2.5.3 Protomatrices (BGs)
72(3)
2.5.3.1 Base Graph 1 (BG1)
75(3)
2.5.3.2 Base Graph 2 (BG2)
78(1)
2.5.4 Rate Matching
79(2)
2.5.5 Interleaving
81(4)
2.5.6 Segmentation
85(1)
2.5.7 Channel Quality Indicator (CQI) Table and Modulation and Coding Scheme (MCS) Table
86(1)
2.5.7.1 CQI Tables
86(2)
2.5.7.2 MCS Tables
88(1)
2.5.8 Determination of Transport Block Size (TBS)
89(1)
2.5.8.1 Procedure to Determine TBS for PDSCH
90(2)
2.5.8.2 Scheduling Flexibility
92(1)
2.5.8.3 MAC Layer Overhead Ratio
92(1)
2.5.8.4 Design of TBS Tables
92(2)
2.6 Complexity, Throughput, And Decoding Latency
94(2)
2.6.1 Complexity
94(1)
2.6.2 Throughput Analysis for the QC-LDPC Decoder
95(1)
2.6.2.1 Throughput of the Row-Parallel Structure
95(1)
2.6.2.2 Throughput of Block-Parallel Structure
96(1)
2.6.3 Decoding Latency
96(1)
2.7 Link-Level Performance
96(1)
2.7.1 Short Block Length
96(1)
2.7.2 Medium Block Length
97(1)
2.7.3 Long Block Length
97(1)
2.8 LDPC Described In 3GPP Specifications
97(9)
2.9 Future Directions
106(1)
2.10 Summary
106(5)
References
107(4)
Chapter 3 Polar Codes
111(90)
Focai Peng
Mengzhu Chen
Saijin Xie
3.1 Origin of polar codes
111(2)
3.2 Survey Of The Polar Code Study
113(4)
3.3 Basic Principle Of Polar Codes
117(7)
3.3.1 Basic Channels
117(1)
3.3.2 Channel Combining
118(3)
3.3.3 Channel Splitting
121(1)
3.3.4 Channel Polarization
122(2)
3.4 Basics Of Encoding And Decoding Of Polar Codes
124(5)
3.4.1 Basics of Encoding
124(1)
3.4.2 Basics of Polar Code Decoding
124(5)
3.5 Polar Code Construction
129(12)
3.5.1 Error Detection
130(1)
3.5.1.1 CRC-Aided Polar Codes (CA-Polar)
130(2)
3.5.1.2 Parity Check Polar Code (PC-Polar) vs. CA-PC-Polar
132(2)
3.5.1.3 Distributed CRC-Aided Polar Code (Dist-CA-Polar) and Pre-Encoder Interleaving
134(2)
3.5.1.4 Hash-Polar Code
136(1)
3.5.2 Generation of Encoder Matrix
137(1)
3.5.2.1 Small Nested Polar Code
138(1)
3.5.2.2 Partial Code
139(1)
3.5.2.3 Polar Code of Arbitrary Length
139(2)
3.6 Polar Code Sequence
141(15)
3.6.1 Basic Concept
141(3)
3.6.2 Description of Several Polar Code Sequences
144(1)
3.6.2.1 Row-Weight (RW) Sequences
144(1)
3.6.2.2 Column-Weight (CW) Sequence
144(1)
3.6.2.3 Polarization Weight (PW) Sequence
144(2)
3.6.2.4 Mutual Information Based Density Evolution (MI-DE) Sequence
146(2)
3.6.2.5 Combined-and-Nested (CN) and Optimized Combined-and-Nested (O-CN)
148(2)
3.6.2.6 SCL-Like Sequence
150(1)
3.6.2.7 Merged Design
151(1)
3.6.3 Properties of Sequences
151(1)
3.6.3.1 Online Computation-Based (OCB)
151(1)
3.6.3.2 Nestedness
151(1)
3.6.3.3 Symmetry
152(1)
3.6.3.4 UPO and Gaussian Universal Partial Order (GUPO)
152(1)
3.6.4 Criteria for Polar Sequence Down-Selection
152(1)
3.6.4.1 Error Block Count
152(1)
3.6.4.2 SNR Spacing in BLER vs. SNR Simulation
152(1)
3.6.4.3 WinCount
153(1)
3.6.5 Merged Solution and Final Selection
154(1)
3.6.6 Pre-Frozen Bits for Rate Matching
155(1)
3.7 Rate Matching For Polar Codes
156(1)
3.8 Interleaving
157(4)
3.8.1 Interleaver with Triangle Shape
157(1)
3.8.2 Double Rectangular Interleaver
158(2)
3.8.3 Interleaving in Rate Matching
160(1)
3.9 Polar Code Retransmission
161(2)
3.10 Segmentation
163(2)
3.11 Systematic Polar Codes
165(3)
3.12 2D Polar Code
168(2)
3.13 Decoding Algorithms For Polar Codes
170(8)
3.13.1 SC Algorithm
170(1)
3.13.2 SC-L Algorithm
171(3)
3.13.3 Statistic Ordering-Based Decoding Algorithm
174(1)
3.13.4 Belief Propagation (BP) Algorithm
175(2)
3.13.5 Parallel Decoding for Polar Code
177(1)
3.14 Complexity Throughput And Decoding Latency
178(3)
3.14.1 Computation Complexity
178(2)
3.14.2 Memory Complexity
180(1)
3.14.3 Throughput
180(1)
3.14.4 Decoding Latency
181(1)
3.15 Performance Of Polar Codes
181(7)
3.15.1 Minimum Hamming Distance
181(1)
3.15.2 Block Error Rate
181(2)
3.15.3 False Alarm Rate
183(1)
3.15.4 Performance Comparison with Other Codes
183(1)
3.15.4.1 Extremely Short Block Length (K ≥ 12 without CRC)
184(1)
3.15.4.2 Short Block Length (12 ≥ K > 200)
184(2)
3.15.4.3 Medium Block Length (200 ≥ K > 1000)
186(1)
3.15.4.4 Long Block Length (K ≤ 1000)
187(1)
3.16 Polar Code In 3GPP Specification
188(4)
3.17 Merits, Shortcomings, And Future Trends Of Polar Codes
192(9)
References
193(8)
Chapter 4 Convolutional Codes
201(24)
Jin Xu
Yifei Yuan
4.1 Basics Of Convolutional Codes
201(13)
4.1.1 Principle of Convolutional Codes and Decoding Algorithms
201(6)
4.1.2 Basic Performance
207(3)
4.1.3 Decoding Complexity and Throughput Analysis
210(1)
4.1.4 Tail-Biting Convolutional Code (TBCC)
210(4)
4.2 Application Of Convolutional Codes In Mobile Communications
214(3)
4.2.1 Convolutional Codes in 3G UMTS (WCDMA)
214(2)
4.2.2 Convolutional Codes in LTE
216(1)
4.3 Enhancements Of Convolutional Codes
217(8)
4.3.1 Supporting Multiple Redundancy Versions
217(1)
4.3.2 Supporting Lower Code Rate
218(1)
4.3.3 Further Optimized Polynomials
219(1)
4.3.4 CRC-Aided List Decoding
220(3)
References
223(2)
Chapter 5 Turbo Codes
225(30)
Jin Xu
Yifei Yuan
5.1 Principle Of Turbo Codes
225(14)
5.1.1 Concatenated Codes Prior to Turbo Codes Era
226(1)
5.1.2 Parallel Concatenated Convolutional Codes
227(2)
5.1.3 Decoding Algorithms
229(7)
5.1.4 Fundamental Performance
236(3)
5.2 Turbo Codes In Lte
239(8)
5.2.1 Turbo Encoder of LTE
239(1)
5.2.2 QPP Interleaver for LTE Turbo Codes
240(4)
5.2.3 Link-Level Performance
244(1)
5.2.4 Decoding Complexity Analysis
245(2)
5.3 Turbo Codes 2.0
247(8)
5.3.1 Longer Block Length
247(1)
5.3.2 Even Lower Code Rate
248(2)
5.3.3 Tail-Biting Turbo Codes
250(2)
5.3.4 New Puncturing Method
252(1)
5.3.5 New Interleaver
252(1)
References
253(2)
Chapter 6 Outer Codes
255(24)
Liguanc Li
Jun Xu
6.1 Channel Characteristics And Outer Codes
255(1)
6.2 Explicit Outer Codes
256(19)
6.2.1 Common Outer Codes
256(2)
6.2.2 Packet Coding
258(1)
6.2.2.1 Solutions of Packet Coding
258(3)
6.2.2.2 More Details of Bit Selections
261(5)
6.2.2.3 Decoding Algorithms
266(7)
6.2.2.4 Performance of Packet Coding in Fading Channels
273(2)
6.3 Implicit Outer Codes
275(1)
6.4 Summary
276(3)
References
276(3)
Chapter 7 Other Advanced Coding Schemes
279
Yifei Yuan
Mengzhu Chen
Focai Peng
7.1 Non-Binary Ldpc Codes
279(6)
7.1.1 Basic Idea
279(1)
7.1.2 Non-Binary LDPC Design for Bit-Interleaved Coded Modulation (BICM)
280(2)
7.1.3 Modulations for Non-Binary Codes
282(3)
7.2 Non-Binary Ra Codes
285(7)
7.2.1 Interleaver
288(3)
7.2.2 Weighting Module
291(1)
7.2.3 Combiner and Accumulator
291(1)
7.2.4 Decoding
292(1)
7.3 Lattice Code
292(7)
7.4 Adaptive Channel Coding Based On Rate-Less Codes
299(4)
7.5 Staircase Codes
303
7.5.1 Encoding
303(1)
7.5.2 Decoding
304(1)
7.5.3 Performance
305(1)
7.5.4 Future Direction
305(1)
References
306
Jun Xu, Senior Expert at the Algorithm Department of ZTE Corporation. With more than 20 years of experience at ZTE Corporation, Xus expertise is in channel coding, especially in design and performance evaluation of low-density parity check (LDPC) codes. Xu is also the inventor of compact proto-matrices for LDPC of WiMAX and 5G.

Yifei Yuan, Chief Expert of China Mobile Research Institute. Dr. Yuan graduated from Tsinghua University and Carnegie Mellon University. He specializes in the research and standardization of key air-interface technologies for 3G, 4G, 5G and 6G mobile networks. He has more than 20 years of experience at Bell Labs, ZTE and China Mobile.