Preface to Second Edition |
|
xi | |
Preface to First Edition |
|
xiii | |
Acknowledgements |
|
xv | |
About the Companion Website |
|
xvii | |
1 Introduction |
|
1 | (10) |
|
|
1 | (2) |
|
|
1 | (1) |
|
1.1.2 Statistics in Analytical and Physical Chemistry |
|
|
2 | (1) |
|
1.1.3 Scientific Computing |
|
|
3 | (1) |
|
1.2 Developments since the 1970s |
|
|
3 | (1) |
|
1.3 Software and Calculations |
|
|
4 | (2) |
|
|
6 | (2) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (3) |
2 Experimental Design |
|
11 | (90) |
|
|
11 | (3) |
|
|
14 | (29) |
|
|
14 | (3) |
|
2.2.2 Analysis of Variance |
|
|
17 | (6) |
|
2.2.3 Design Matrices and Modelling |
|
|
23 | (6) |
|
2.2.4 Assessment of Significance |
|
|
29 | (9) |
|
2.2.5 Leverage and Confidence in Models |
|
|
38 | (5) |
|
|
43 | (19) |
|
2.3.1 Full Factorial Designs |
|
|
44 | (5) |
|
2.3.2 Fractional Factorial Designs |
|
|
49 | (6) |
|
2.3.3 Plackett-Burman and Taguchi Designs |
|
|
55 | (2) |
|
2.3.4 Partial Factorials at Several Levels: Calibration Designs |
|
|
57 | (5) |
|
2.4 Central Composite or Response Surface Designs |
|
|
62 | (8) |
|
2.4.1 Setting up the Design |
|
|
62 | (3) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
67 | (2) |
|
2.4.5 Statistical Factors |
|
|
69 | (1) |
|
|
70 | (12) |
|
|
70 | (1) |
|
|
71 | (3) |
|
|
74 | (2) |
|
|
76 | (5) |
|
|
81 | (1) |
|
|
82 | (4) |
|
2.6.1 Fixed Sized Simplex |
|
|
82 | (2) |
|
|
84 | (1) |
|
|
84 | (2) |
|
|
86 | (1) |
|
|
86 | (15) |
3 Signal Processing |
|
101 | (62) |
|
|
101 | (2) |
|
3.1.1 Environmental and Geological Processes |
|
|
101 | (1) |
|
3.1.2 Industrial Process Control |
|
|
101 | (1) |
|
3.1.3 Chromatograms and Spectra |
|
|
102 | (1) |
|
|
102 | (1) |
|
|
102 | (1) |
|
|
103 | (9) |
|
|
103 | (4) |
|
|
107 | (2) |
|
|
109 | (3) |
|
|
112 | (1) |
|
|
112 | (10) |
|
3.3.1 Smoothing Functions |
|
|
112 | (4) |
|
|
116 | (2) |
|
|
118 | (4) |
|
3.4 Correlograms and Time Series Analysis |
|
|
122 | (6) |
|
|
122 | (2) |
|
|
124 | (3) |
|
3.4.3 Multivariate Correlograms |
|
|
127 | (1) |
|
3.5 Fourier Transform Techniques |
|
|
128 | (14) |
|
|
128 | (7) |
|
|
135 | (5) |
|
3.5.3 Convolution Theorem |
|
|
140 | (2) |
|
|
142 | (11) |
|
|
142 | (3) |
|
|
145 | (3) |
|
|
148 | (2) |
|
|
150 | (3) |
|
|
153 | (10) |
4 Principal Component Analysis and Unsupervised Pattern Recognition |
|
163 | (52) |
|
|
163 | (1) |
|
4.1.1 Exploratory Data Analysis |
|
|
163 | (1) |
|
|
164 | (1) |
|
4.2 The Concept and Need for Principal Components Analysis |
|
|
164 | (7) |
|
|
164 | (1) |
|
4.2.2 Multivariate Data Matrices |
|
|
165 | (1) |
|
|
166 | (5) |
|
|
171 | (1) |
|
4.3 Principal Components Analysis: The Method |
|
|
171 | (12) |
|
4.3.1 Scores and Loadings |
|
|
171 | (4) |
|
4.3.2 Rank and Eigenvalues |
|
|
175 | (8) |
|
|
183 | (1) |
|
4.5 Graphical Representation of Scores and Loadings |
|
|
184 | (7) |
|
|
185 | (3) |
|
|
188 | (3) |
|
|
191 | (8) |
|
4.6.1 Transforming Individual Elements of a Matrix |
|
|
191 | (2) |
|
|
193 | (1) |
|
|
194 | (3) |
|
|
197 | (2) |
|
|
199 | (1) |
|
4.7 Comparing Multivariate Patterns |
|
|
199 | (2) |
|
|
200 | (1) |
|
4.7.2 Procrustes Analysis |
|
|
201 | (1) |
|
4.8 Unsupervised Pattern Recognition: Cluster Analysis |
|
|
201 | (6) |
|
|
202 | (2) |
|
|
204 | (2) |
|
|
206 | (1) |
|
|
206 | (1) |
|
4.9 Multi-way Pattern Recognition |
|
|
207 | (3) |
|
|
207 | (1) |
|
4.9.2 Parallel Factor Analysis (PARAFAC) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
210 | (5) |
5 Classification and Supervised Pattern Recognition |
|
215 | (50) |
|
|
215 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
5.2 Two-Class Classifiers |
|
|
216 | (13) |
|
5.2.1 Distance-Based Methods |
|
|
217 | (7) |
|
5.2.2 Partial Least-Squares Discriminant Analysis |
|
|
224 | (2) |
|
5.2.3 K Nearest Neighbours |
|
|
226 | (3) |
|
5.3 One-Class Classifiers |
|
|
229 | (7) |
|
5.3.1 Quadratic Discriminant Analysis |
|
|
229 | (3) |
|
5.3.2 Disjoint PCA and SIMCA |
|
|
232 | (4) |
|
5.4 Multi-Class Classifiers |
|
|
236 | (1) |
|
5.5 Optimisation and Validation |
|
|
237 | (9) |
|
|
238 | (7) |
|
|
245 | (1) |
|
5.6 Significant Variables |
|
|
246 | (6) |
|
5.6.1 Partial Least-Squares Discriminant Loadings and Weights |
|
|
248 | (2) |
|
5.6.2 Univariate Statistical Indicators |
|
|
250 | (1) |
|
5.6.3 Variable Selection for SIMCA |
|
|
251 | (1) |
|
|
252 | (13) |
6 Calibration |
|
265 | (58) |
|
|
265 | (2) |
|
6.1.1 History, Usage and Terminology |
|
|
265 | (2) |
|
|
267 | (1) |
|
6.2 Univariate Calibration |
|
|
267 | (9) |
|
6.2.1 Classical Calibration |
|
|
269 | (3) |
|
6.2.2 Inverse Calibration |
|
|
272 | (2) |
|
6.2.3 Intercept and Centring |
|
|
274 | (2) |
|
6.3 Multiple Linear Regression |
|
|
276 | (8) |
|
6.3.1 Multi-detector Advantage |
|
|
276 | (1) |
|
6.3.2 Multi-wavelength Equations |
|
|
277 | (3) |
|
6.3.3 Multivariate Approaches |
|
|
280 | (4) |
|
6.4 Principal Components Regression |
|
|
284 | (5) |
|
|
284 | (3) |
|
6.4.2 Quality of Prediction |
|
|
287 | (2) |
|
6.5 Partial Least Squares Regression |
|
|
289 | (13) |
|
|
289 | (5) |
|
|
294 | (3) |
|
|
297 | (5) |
|
6.6 Model Validation and Optimisation |
|
|
302 | (7) |
|
|
302 | (1) |
|
|
303 | (2) |
|
6.6.3 Independent Test Sets |
|
|
305 | (4) |
|
|
309 | (14) |
7 Evolutionary Multivariate Signals |
|
323 | (52) |
|
|
323 | (2) |
|
7.2 Exploratory Data Analysis and Pre-processing |
|
|
325 | (16) |
|
7.2.1 Baseline Correction |
|
|
325 | (1) |
|
7.2.2 Principal Component-Based Plots |
|
|
325 | (4) |
|
7.2.3 Scaling the Data after PCA |
|
|
329 | (3) |
|
7.2.4 Scaling the Data before PCA |
|
|
332 | (7) |
|
|
339 | (2) |
|
7.3 Determining Composition |
|
|
341 | (14) |
|
|
341 | (1) |
|
|
342 | (3) |
|
7.3.3 Correlation- and Similarity-Based Methods |
|
|
345 | (3) |
|
7.3.4 Eigenvalue-Based Methods |
|
|
348 | (4) |
|
|
352 | (3) |
|
|
355 | (10) |
|
7.4.1 Selectivity for All Components |
|
|
356 | (4) |
|
7.4.2 Partial Selectivity |
|
|
360 | (2) |
|
7.4.3 Incorporating Constraints: ITTFA, ALS and MCR |
|
|
362 | (3) |
|
|
365 | (10) |
A Appendix |
|
375 | (54) |
|
|
375 | (2) |
|
A.1.1 Notation and Definitions |
|
|
375 | (1) |
|
A.1.2 Matrix and Vector Operations |
|
|
375 | (2) |
|
|
377 | (4) |
|
A.2.1 Principal Components Analysis |
|
|
377 | (1) |
|
|
378 | (1) |
|
|
379 | (1) |
|
|
380 | (1) |
|
A.3 Basic Statistical Concepts |
|
|
381 | (9) |
|
A.3.1 Descriptive Statistics |
|
|
381 | (2) |
|
A.3.2 Normal Distribution |
|
|
383 | (1) |
|
|
383 | (3) |
|
|
386 | (1) |
|
|
386 | (4) |
|
A.4 Excel for Chemometrics |
|
|
390 | (18) |
|
A.4.1 Names and Addresses |
|
|
390 | (4) |
|
A.4.2 Equations and Functions |
|
|
394 | (4) |
|
|
398 | (1) |
|
|
398 | (2) |
|
A.4.5 Downloadable Macros |
|
|
400 | (8) |
|
A.5 Matlab for Chemometrics |
|
|
408 | (21) |
|
|
408 | (1) |
|
|
409 | (2) |
|
|
411 | (5) |
|
A.5.4 Importing and Exporting Data |
|
|
416 | (1) |
|
A.5.5 Introduction to Programming and Structure |
|
|
417 | (1) |
|
|
418 | (11) |
Answers to the Multiple Choice Questions |
|
429 | (4) |
Index |
|
433 | |