|
|
1 | (12) |
|
|
1 | (1) |
|
1.2 mm-Wave Applications and Prior-Arts |
|
|
2 | (4) |
|
|
6 | (3) |
|
|
9 | (4) |
|
|
10 | (3) |
|
2 PA and Transmitter Basics |
|
|
13 | (20) |
|
|
13 | (1) |
|
|
13 | (8) |
|
2.2.1 Gain Match and Power Match |
|
|
13 | (1) |
|
2.2.2 Drain Efficiency and PAE |
|
|
14 | (2) |
|
|
16 | (2) |
|
2.2.4 Power Combining Technique |
|
|
18 | (3) |
|
|
21 | (7) |
|
2.3.1 Transmitter Architectures |
|
|
21 | (2) |
|
2.3.2 Transmitter Non-idealities |
|
|
23 | (5) |
|
2.4 Link Budget for Wireless Communications |
|
|
28 | (3) |
|
|
31 | (2) |
|
|
31 | (2) |
|
3 mm-Wave Active and Passive Devices |
|
|
33 | (26) |
|
|
33 | (1) |
|
|
34 | (9) |
|
3.2.1 Influence of Device Parasitics and Long Intraconnects |
|
|
34 | (2) |
|
3.2.2 mm-Wave Power Transistor Layout |
|
|
36 | (3) |
|
3.2.3 Neutralized Amplifier Stage |
|
|
39 | (4) |
|
|
43 | (12) |
|
3.3.1 Inductors and Loss Mechanisms |
|
|
43 | (1) |
|
|
44 | (5) |
|
|
49 | (3) |
|
|
52 | (2) |
|
3.3.5 Influence of Metal Fills |
|
|
54 | (1) |
|
|
55 | (4) |
|
|
56 | (3) |
|
4 Low-Power and Efficiency Enhancement Techniques for mm-Wave PAs |
|
|
59 | (28) |
|
|
59 | (1) |
|
4.2 Low-Power and High-Efficiency Techniques |
|
|
60 | (7) |
|
|
60 | (2) |
|
|
62 | (1) |
|
4.2.3 Digital-Controlled Polar Transmitter |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (2) |
|
4.3 Design Example: A 60-GHz Class AB Dual-Mode PA |
|
|
67 | (16) |
|
|
68 | (2) |
|
4.3.2 Dual-Mode Power Combiner |
|
|
70 | (2) |
|
4.3.3 Measurement Results |
|
|
72 | (10) |
|
4.3.4 Long Term Reliability |
|
|
82 | (1) |
|
|
83 | (4) |
|
|
84 | (3) |
|
5 mm-Wave Outphasing Transmitter |
|
|
87 | (28) |
|
|
87 | (1) |
|
5.2 Outphasing PA vs. Linear PA at mm-Wave |
|
|
88 | (2) |
|
5.3 Outphasing Signal Combining |
|
|
90 | (4) |
|
5.3.1 Isolating and Non-isolating Combiners |
|
|
90 | (2) |
|
5.3.2 Transformer-Based Combiner and Load Modulation Effect |
|
|
92 | (1) |
|
5.3.3 Signal Combining by Beamforming |
|
|
93 | (1) |
|
5.4 Outphasing Non-idealities |
|
|
94 | (5) |
|
5.4.1 Outphasing Signal Bandwidth |
|
|
94 | (2) |
|
5.4.2 Mismatch Between Signal Paths |
|
|
96 | (3) |
|
5.5 Design Example: A 60-GHz Outphasing Transmitter |
|
|
99 | (13) |
|
5.5.1 Transmitter Implementation |
|
|
99 | (2) |
|
|
101 | (2) |
|
|
103 | (1) |
|
5.5.4 Outphasing Angle Clipping |
|
|
104 | (1) |
|
5.5.5 Measurement Results |
|
|
105 | (6) |
|
|
111 | (1) |
|
|
112 | (3) |
|
|
113 | (2) |
|
6 mm-Wave Broadband Direct-Conversion TX Towards 10+Gb/s |
|
|
115 | (24) |
|
|
115 | (1) |
|
6.2 LO Leakage and I/Q Imbalance |
|
|
116 | (3) |
|
6.2.1 LO Leakage and Calibration |
|
|
116 | (2) |
|
6.2.2 I/Q Imbalance and Calibration |
|
|
118 | (1) |
|
6.3 Design Example: A 64-QAM E-Band TX |
|
|
119 | (15) |
|
6.3.1 System Architecture |
|
|
119 | (1) |
|
6.3.2 I/Q Modulator with LO Leakage Calibration |
|
|
120 | (4) |
|
6.3.3 PPF with I/Q Imbalance Calibration |
|
|
124 | (5) |
|
|
129 | (1) |
|
6.3.5 Measurement Results and Discussions |
|
|
129 | (5) |
|
|
134 | (5) |
|
|
137 | (2) |
|
7 mm-Wave Broadband Power Amplifier Towards 20+dBm |
|
|
139 | (32) |
|
|
139 | (1) |
|
7.2 Single-Stage Amplifier |
|
|
140 | (5) |
|
|
140 | (2) |
|
|
142 | (3) |
|
7.3 Broadband Power Combiner |
|
|
145 | (4) |
|
7.3.1 Series Power Combiner |
|
|
145 | (1) |
|
7.3.2 Parallel Power Combiner |
|
|
146 | (1) |
|
7.3.3 Parallel-Series Power Combiner |
|
|
147 | (2) |
|
7.4 Design Example 1: A Broadband E-Band Power Amplifier |
|
|
149 | (8) |
|
|
149 | (2) |
|
7.4.2 Measurement Results |
|
|
151 | (6) |
|
7.5 Design Example 2: An E-band Neutralized Bootstrapped Cascode Power Amplifier |
|
|
157 | (10) |
|
7.5.1 Neutralized Bootstrapped Cascode Amplifier |
|
|
157 | (2) |
|
|
159 | (3) |
|
7.5.3 Measurement Results |
|
|
162 | (5) |
|
|
167 | (4) |
|
|
169 | (2) |
|
|
171 | (6) |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
173 | (4) |
|
|
174 | (3) |
Index |
|
177 | |