Preface |
|
xi | |
Author biography |
|
xiii | |
|
Chapter 1 Essence of Fluid Dynamics |
|
|
1 | (10) |
|
|
1 | (1) |
|
1.2 General Form of Transport Equations |
|
|
2 | (3) |
|
1.2.1 Derivation of General Form of Transport Equations |
|
|
2 | (2) |
|
1.2.2 Maximum Principle, Conservativeness, and Boundedness |
|
|
4 | (1) |
|
1.3 Navier-Stokes Equations |
|
|
5 | (6) |
|
1.3.1 Continuity Equation and Momentum Equations |
|
|
5 | (2) |
|
1.3.2 Dimensionless Form of Equations and Reynolds Number |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (2) |
|
Chapter 2 Finite Difference and Finite Volume Methods |
|
|
11 | (44) |
|
2.1 Finite Difference Method |
|
|
11 | (11) |
|
|
11 | (4) |
|
2.1.2 Example: Laminar Channel Flow |
|
|
15 | (4) |
|
|
19 | (3) |
|
|
22 | (4) |
|
|
26 | (8) |
|
2.3.1 Bounded Scheme and Positive Scheme |
|
|
26 | (1) |
|
2.3.2 Properties of Positive Scheme |
|
|
27 | (2) |
|
2.3.3 Global Error and Truncation Error |
|
|
29 | (2) |
|
2.3.4 Global Error Estimation |
|
|
31 | (3) |
|
2.4 Finite Volume Method (Continued) |
|
|
34 | (10) |
|
2.4.1 Virtual Control Volume and Virtual Node |
|
|
34 | (2) |
|
2.4.2 Example: Channel Flow Consisting of Two Immiscible Fluids |
|
|
36 | (8) |
|
2.5 A Glimpse of Turbulence |
|
|
44 | (6) |
|
|
44 | (1) |
|
2.5.2 Mixing Length Model |
|
|
45 | (1) |
|
2.5.3 Example: Turbulent Channel Flow |
|
|
46 | (4) |
|
|
50 | (5) |
|
|
50 | (3) |
|
|
53 | (2) |
|
Chapter 3 Numerical Schemes |
|
|
55 | (60) |
|
3.1 Schemes for Time Advancing |
|
|
55 | (20) |
|
3.1.1 Example: Start-Up of Couette Flow |
|
|
55 | (2) |
|
3.1.2 Euler Explicit Scheme |
|
|
57 | (1) |
|
3.1.3 Consistency, Stability, and Convergence |
|
|
58 | (1) |
|
3.1.4 Von Neumann and Matrix Stability Analysis Methods |
|
|
59 | (6) |
|
3.1.5 Euler Implicit Scheme |
|
|
65 | (3) |
|
3.1.6 Crank-Nicolson Scheme |
|
|
68 | (2) |
|
3.1.7 Runge-Kutta Schemes |
|
|
70 | (4) |
|
3.1.8 Second-Order Backward Difference and Adams-Bashforth Schemes |
|
|
74 | (1) |
|
3.2 Unsteady Convection-Diffusion Equation |
|
|
75 | (18) |
|
3.2.1 Example: Mass Transfer in 1-D Flow |
|
|
75 | (1) |
|
|
76 | (12) |
|
3.2.3 Local Mesh Refinement |
|
|
88 | (5) |
|
3.3 Schemes for Convection Term |
|
|
93 | (16) |
|
3.3.1 First-Order Upwind Scheme |
|
|
93 | (2) |
|
|
95 | (1) |
|
3.3.3 Second- and Higher-Order Upwind Schemes |
|
|
95 | (4) |
|
3.3.4 Deferred-Correction Approach |
|
|
99 | (2) |
|
|
101 | (1) |
|
3.3.6 Bounded Second-Order Schemes |
|
|
102 | (2) |
|
3.3.7 ENO and WENO Schemes |
|
|
104 | (2) |
|
|
106 | (3) |
|
3.4 Proper Boundary Conditions |
|
|
109 | (6) |
|
|
112 | (2) |
|
|
114 | (1) |
|
Chapter 4 Numerical Algorithms |
|
|
115 | (26) |
|
|
115 | (2) |
|
4.2 Basic Iterative Methods |
|
|
117 | (7) |
|
4.2.1 Jacobi and Gauss-Seidel Iteration Methods |
|
|
118 | (2) |
|
4.2.2 Successive Over-Relaxation (SOR) Method |
|
|
120 | (1) |
|
4.2.3 Alternating Direction Implicit (ADI) Method |
|
|
121 | (1) |
|
4.2.4 Strongly Implicit Procedure (SIP) Method |
|
|
122 | (2) |
|
4.3 Krylov Subspace Methods |
|
|
124 | (8) |
|
4.3.1 Conjugate Gradient Method |
|
|
124 | (4) |
|
4.3.2 Condition Number and Preconditioned Conjugate Gradient Method |
|
|
128 | (3) |
|
4.3.3 GMRES, BiCGSTAB and `V' |
|
|
131 | (1) |
|
|
132 | (9) |
|
|
138 | (3) |
|
Chapter 5 Navier-Stokes Solution Methods |
|
|
141 | (52) |
|
|
141 | (7) |
|
5.1.1 Example: 1-D Flow Through Filter |
|
|
141 | (6) |
|
|
147 | (1) |
|
5.2 Navier-Stokes Solution Methods |
|
|
148 | (8) |
|
5.2.1 Coupled vs. Segregated Methods |
|
|
148 | (1) |
|
|
148 | (3) |
|
|
151 | (3) |
|
5.2.4 Co-located Mesh and Momentum Interpolation Method |
|
|
154 | (2) |
|
5.3 Example: Lid-Driven Cavity Flow |
|
|
156 | (17) |
|
5.3.1 Problem Statement, Mesh, and Formulas |
|
|
156 | (9) |
|
|
165 | (1) |
|
5.3.3 Boundary Conditions Implementation |
|
|
166 | (3) |
|
5.3.4 Flow Field V isualization |
|
|
169 | (1) |
|
5.3.5 Procedure of SIMPLE Method |
|
|
170 | (1) |
|
5.3.6 Results and Discussion |
|
|
171 | (1) |
|
5.3.7 Procedure of Projection Method |
|
|
171 | (2) |
|
5.4 Example: Natural Convection in a Cavity |
|
|
173 | (7) |
|
5.4.1 Problem Description |
|
|
173 | (1) |
|
5.4.2 Governing Equations and Boussinesq Assumption |
|
|
173 | (3) |
|
5.4.3 Discretization and Boundary Conditions |
|
|
176 | (3) |
|
5.4.4 Results and Discussion |
|
|
179 | (1) |
|
5.5 Example: Flow Over a Backward Facing Step |
|
|
180 | (4) |
|
5.5.1 Problem Description |
|
|
180 | (1) |
|
5.5.2 Boundary Conditions |
|
|
181 | (1) |
|
5.5.3 Results and Discussion |
|
|
182 | (1) |
|
|
183 | (1) |
|
5.6 Example: Flow Over a Square Cylinder |
|
|
184 | (5) |
|
5.6.1 Problem Description |
|
|
184 | (1) |
|
5.6.2 Mesh and Boundary Conditions |
|
|
184 | (1) |
|
5.6.3 Results and Discussion |
|
|
185 | (4) |
|
5.6.4 Flow Over a Square Cylinder at Re = 100 |
|
|
189 | (1) |
|
5.7 Verification and Validation |
|
|
189 | (4) |
|
|
191 | (2) |
|
Chapter 6 Unstructured Mesh |
|
|
193 | (32) |
|
|
193 | (2) |
|
6.2 Triangular Mesh Generation |
|
|
195 | (4) |
|
6.2.1 Delaunay Triangulation |
|
|
195 | (1) |
|
6.2.2 Mesh Generation Algorithm of Persson and Strang |
|
|
196 | (3) |
|
6.2.3 Connectivity and Geometry Information |
|
|
199 | (1) |
|
6.3 Solving General Convection-Diffusion Equation with Unstructured Mesh |
|
|
199 | (11) |
|
6.3.1 The General Convection-Diffusion Equation |
|
|
199 | (2) |
|
6.3.2 Discretization of the General Convection-Diffusion Equation |
|
|
201 | (6) |
|
6.3.3 Boundary Conditions |
|
|
207 | (2) |
|
6.3.4 Example: Heat Transfer Over a Corner |
|
|
209 | (1) |
|
6.4 Solving Navier-Stokes Equations with Unstructured Mesh |
|
|
210 | (9) |
|
6.4.1 The SIMPLE Procedure |
|
|
210 | (5) |
|
6.4.2 Example: Lid-Driven Cavity Flow |
|
|
215 | (1) |
|
6.4.3 Example: Natural Convection in Concentric Cylindrical Annulus |
|
|
216 | (3) |
|
6.5 Other Means to Handle Complex Boundaries |
|
|
219 | (6) |
|
|
223 | (2) |
|
Chapter 7 Multiphase Flow |
|
|
225 | (62) |
|
|
225 | (1) |
|
|
226 | (33) |
|
7.2.1 Interface Representation |
|
|
226 | (1) |
|
7.2.2 Interface Reconstruction |
|
|
227 | (8) |
|
7.2.3 Interface Advection |
|
|
235 | (6) |
|
7.2.4 Example: Interface Transportation by Uniform Velocity |
|
|
241 | (3) |
|
7.2.5 Flow Field Calculation |
|
|
244 | (6) |
|
7.2.6 Example: Dam-Break Problem |
|
|
250 | (4) |
|
|
254 | (2) |
|
7.2.8 Example: Excess Pressure in a Water Drop |
|
|
256 | (3) |
|
|
259 | (14) |
|
7.3.1 Interface Representation |
|
|
259 | (2) |
|
7.3.2 Interface Advection |
|
|
261 | (2) |
|
7.3.3 Reinitialization of Level-Set Function |
|
|
263 | (2) |
|
7.3.4 Flow Field Calculation |
|
|
265 | (4) |
|
7.3.5 Example: Gas Bubble Rising Problem |
|
|
269 | (4) |
|
7.4 Multiphase Flow with Phase Change |
|
|
273 | (14) |
|
|
273 | (2) |
|
7.4.2 Temperature Field Computation |
|
|
275 | (2) |
|
7.4.3 Flow Field Computation |
|
|
277 | (1) |
|
7.4.4 Example: 1-D Stefan Problem |
|
|
278 | (5) |
|
|
283 | (4) |
|
|
287 | (62) |
|
|
287 | (6) |
|
8.2 Two -- and Four-Equation RANS Models |
|
|
293 | (43) |
|
|
293 | (15) |
|
8.2.2 K -- ε Model with Wall Models |
|
|
308 | (5) |
|
|
313 | (7) |
|
|
320 | (5) |
|
|
325 | (5) |
|
8.2.6 Example: Turbulent Pipe Flow with Heat Transfer |
|
|
330 | (6) |
|
8.3 Large Eddy Simulation |
|
|
336 | (13) |
|
|
336 | (2) |
|
8.3.2 Subgrid-Scale Stress Models |
|
|
338 | (10) |
|
|
348 | (1) |
|
|
348 | (1) |
|
|
349 | (12) |
|
|
349 | (7) |
|
A.1 Assemble Diagonal Vectors to Form Coefficient Matrix |
|
|
349 | (1) |
|
A.2 TDMA Algorithm (Thomas Algorithm) |
|
|
349 | (1) |
|
A.3 Stone's Strongly Implicit Procedure (SIP) |
|
|
349 | (2) |
|
A.4 Assemble Diagonal Matrices to Form Coefficient Matrix |
|
|
351 | (1) |
|
A.5 Incomplete Cholesky Conjugate Gradient (ICCG) Method |
|
|
352 | (1) |
|
|
352 | (2) |
|
A.7 Triangular Mesh Generation Program of Persson and Strang |
|
|
354 | (1) |
|
A.8 Useful Accessory Functions to Triangular Mesh Generation Program of Persson and Strang |
|
|
355 | (1) |
|
B Von Neumann Analysis of FTCS Scheme |
|
|
356 | (5) |
|
|
359 | (2) |
References |
|
361 | (5) |
Index |
|
366 | |