Muutke küpsiste eelistusi

E-raamat: Computational Fluid Dynamics for Mechanical Engineering [Taylor & Francis e-raamat]

(Cedarville University, USA)
  • Formaat: 370 pages, 22 Tables, black and white; 208 Line drawings, black and white; 208 Illustrations, black and white
  • Ilmumisaeg: 19-Oct-2021
  • Kirjastus: CRC Press
  • ISBN-13: 9781003138822
  • Taylor & Francis e-raamat
  • Hind: 138,48 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 197,84 €
  • Säästad 30%
  • Formaat: 370 pages, 22 Tables, black and white; 208 Line drawings, black and white; 208 Illustrations, black and white
  • Ilmumisaeg: 19-Oct-2021
  • Kirjastus: CRC Press
  • ISBN-13: 9781003138822

This textbook presents the basic methods, numerical schemes, and algorithms of computational fluid dynamics (CFD). Readers will learn to compose MATLAB® programs to solve realistic fluid flow problems.

Newer research results on stability and boundedness of various numerical schemes are incorporated. The book emphasizes large eddy simulation (LES) in the chapter on turbulent flow simulation besides the two-equation models. Volume of fraction (VOF) and related methods will be the focus of the chapter on two-phase flows.

The textbook was written for a first course in computational fluid dynamics (CFD) taken by undergraduate students in a Mechanical Engineering major.



This textbook presents the basic methods, numerical schemes, and algorithms of computational fluid dynamics (CFD). Readers will learn to compose MATLAB programs to solve realistic fluid flow problems. The topics covered in this book help prepare mechanical engineering students to better understand and use commercial CFD software.

Preface xi
Author biography xiii
Chapter 1 Essence of Fluid Dynamics
1(10)
1.1 Introduction
1(1)
1.2 General Form of Transport Equations
2(3)
1.2.1 Derivation of General Form of Transport Equations
2(2)
1.2.2 Maximum Principle, Conservativeness, and Boundedness
4(1)
1.3 Navier-Stokes Equations
5(6)
1.3.1 Continuity Equation and Momentum Equations
5(2)
1.3.2 Dimensionless Form of Equations and Reynolds Number
7(1)
Exercises
8(1)
Note
9(2)
Chapter 2 Finite Difference and Finite Volume Methods
11(44)
2.1 Finite Difference Method
11(11)
2.1.1 Finite Differences
11(4)
2.1.2 Example: Laminar Channel Flow
15(4)
2.1.3 TDMA Algorithm
19(3)
2.2 Finite Volume Method
22(4)
2.3 Error Analysis
26(8)
2.3.1 Bounded Scheme and Positive Scheme
26(1)
2.3.2 Properties of Positive Scheme
27(2)
2.3.3 Global Error and Truncation Error
29(2)
2.3.4 Global Error Estimation
31(3)
2.4 Finite Volume Method (Continued)
34(10)
2.4.1 Virtual Control Volume and Virtual Node
34(2)
2.4.2 Example: Channel Flow Consisting of Two Immiscible Fluids
36(8)
2.5 A Glimpse of Turbulence
44(6)
2.5.1 Introduction
44(1)
2.5.2 Mixing Length Model
45(1)
2.5.3 Example: Turbulent Channel Flow
46(4)
2.6 The CFD Procedure
50(5)
Exercises
50(3)
Notes
53(2)
Chapter 3 Numerical Schemes
55(60)
3.1 Schemes for Time Advancing
55(20)
3.1.1 Example: Start-Up of Couette Flow
55(2)
3.1.2 Euler Explicit Scheme
57(1)
3.1.3 Consistency, Stability, and Convergence
58(1)
3.1.4 Von Neumann and Matrix Stability Analysis Methods
59(6)
3.1.5 Euler Implicit Scheme
65(3)
3.1.6 Crank-Nicolson Scheme
68(2)
3.1.7 Runge-Kutta Schemes
70(4)
3.1.8 Second-Order Backward Difference and Adams-Bashforth Schemes
74(1)
3.2 Unsteady Convection-Diffusion Equation
75(18)
3.2.1 Example: Mass Transfer in 1-D Flow
75(1)
3.2.2 FTCS Scheme
76(12)
3.2.3 Local Mesh Refinement
88(5)
3.3 Schemes for Convection Term
93(16)
3.3.1 First-Order Upwind Scheme
93(2)
3.3.2 Godunov Theorem
95(1)
3.3.3 Second- and Higher-Order Upwind Schemes
95(4)
3.3.4 Deferred-Correction Approach
99(2)
3.3.5 Hybrid Schemes
101(1)
3.3.6 Bounded Second-Order Schemes
102(2)
3.3.7 ENO and WENO Schemes
104(2)
3.3.8 Harten's Lemma
106(3)
3.4 Proper Boundary Conditions
109(6)
Exercises
112(2)
Notes
114(1)
Chapter 4 Numerical Algorithms
115(26)
4.1 Introduction
115(2)
4.2 Basic Iterative Methods
117(7)
4.2.1 Jacobi and Gauss-Seidel Iteration Methods
118(2)
4.2.2 Successive Over-Relaxation (SOR) Method
120(1)
4.2.3 Alternating Direction Implicit (ADI) Method
121(1)
4.2.4 Strongly Implicit Procedure (SIP) Method
122(2)
4.3 Krylov Subspace Methods
124(8)
4.3.1 Conjugate Gradient Method
124(4)
4.3.2 Condition Number and Preconditioned Conjugate Gradient Method
128(3)
4.3.3 GMRES, BiCGSTAB and `V'
131(1)
4.4 FFT Method
132(9)
Exercises
138(3)
Chapter 5 Navier-Stokes Solution Methods
141(52)
5.1 Odd-Even Decoupling
141(7)
5.1.1 Example: 1-D Flow Through Filter
141(6)
5.1.2 Staggered Mesh
147(1)
5.2 Navier-Stokes Solution Methods
148(8)
5.2.1 Coupled vs. Segregated Methods
148(1)
5.2.2 SIMPLE Method
148(3)
5.2.3 Projection Method
151(3)
5.2.4 Co-located Mesh and Momentum Interpolation Method
154(2)
5.3 Example: Lid-Driven Cavity Flow
156(17)
5.3.1 Problem Statement, Mesh, and Formulas
156(9)
5.3.2 Under-Relaxation
165(1)
5.3.3 Boundary Conditions Implementation
166(3)
5.3.4 Flow Field V isualization
169(1)
5.3.5 Procedure of SIMPLE Method
170(1)
5.3.6 Results and Discussion
171(1)
5.3.7 Procedure of Projection Method
171(2)
5.4 Example: Natural Convection in a Cavity
173(7)
5.4.1 Problem Description
173(1)
5.4.2 Governing Equations and Boussinesq Assumption
173(3)
5.4.3 Discretization and Boundary Conditions
176(3)
5.4.4 Results and Discussion
179(1)
5.5 Example: Flow Over a Backward Facing Step
180(4)
5.5.1 Problem Description
180(1)
5.5.2 Boundary Conditions
181(1)
5.5.3 Results and Discussion
182(1)
5.5.4 SIMPLEC Method
183(1)
5.6 Example: Flow Over a Square Cylinder
184(5)
5.6.1 Problem Description
184(1)
5.6.2 Mesh and Boundary Conditions
184(1)
5.6.3 Results and Discussion
185(4)
5.6.4 Flow Over a Square Cylinder at Re = 100
189(1)
5.7 Verification and Validation
189(4)
Exercises
191(2)
Chapter 6 Unstructured Mesh
193(32)
6.1 Introduction
193(2)
6.2 Triangular Mesh Generation
195(4)
6.2.1 Delaunay Triangulation
195(1)
6.2.2 Mesh Generation Algorithm of Persson and Strang
196(3)
6.2.3 Connectivity and Geometry Information
199(1)
6.3 Solving General Convection-Diffusion Equation with Unstructured Mesh
199(11)
6.3.1 The General Convection-Diffusion Equation
199(2)
6.3.2 Discretization of the General Convection-Diffusion Equation
201(6)
6.3.3 Boundary Conditions
207(2)
6.3.4 Example: Heat Transfer Over a Corner
209(1)
6.4 Solving Navier-Stokes Equations with Unstructured Mesh
210(9)
6.4.1 The SIMPLE Procedure
210(5)
6.4.2 Example: Lid-Driven Cavity Flow
215(1)
6.4.3 Example: Natural Convection in Concentric Cylindrical Annulus
216(3)
6.5 Other Means to Handle Complex Boundaries
219(6)
Exercises
223(2)
Chapter 7 Multiphase Flow
225(62)
7.1 Introduction
225(1)
7.2 VOF Method
226(33)
7.2.1 Interface Representation
226(1)
7.2.2 Interface Reconstruction
227(8)
7.2.3 Interface Advection
235(6)
7.2.4 Example: Interface Transportation by Uniform Velocity
241(3)
7.2.5 Flow Field Calculation
244(6)
7.2.6 Example: Dam-Break Problem
250(4)
7.2.7 Surface Tension
254(2)
7.2.8 Example: Excess Pressure in a Water Drop
256(3)
7.3 Level-Set Method
259(14)
7.3.1 Interface Representation
259(2)
7.3.2 Interface Advection
261(2)
7.3.3 Reinitialization of Level-Set Function
263(2)
7.3.4 Flow Field Calculation
265(4)
7.3.5 Example: Gas Bubble Rising Problem
269(4)
7.4 Multiphase Flow with Phase Change
273(14)
7.4.1 Introduction
273(2)
7.4.2 Temperature Field Computation
275(2)
7.4.3 Flow Field Computation
277(1)
7.4.4 Example: 1-D Stefan Problem
278(5)
Exercises
283(4)
Chapter 8 Turbulent Flow
287(62)
8.1 Introduction
287(6)
8.2 Two -- and Four-Equation RANS Models
293(43)
8.2.1 K -- ε Model
293(15)
8.2.2 K -- ε Model with Wall Models
308(5)
8.2.3 K -- ω Model
313(7)
8.2.4 SST Model
320(5)
8.2.5 V2F Model
325(5)
8.2.6 Example: Turbulent Pipe Flow with Heat Transfer
330(6)
8.3 Large Eddy Simulation
336(13)
8.3.1 Filtering
336(2)
8.3.2 Subgrid-Scale Stress Models
338(10)
Exercises
348(1)
Note
348(1)
Appendix
349(12)
A Matlab® Functions
349(7)
A.1 Assemble Diagonal Vectors to Form Coefficient Matrix
349(1)
A.2 TDMA Algorithm (Thomas Algorithm)
349(1)
A.3 Stone's Strongly Implicit Procedure (SIP)
349(2)
A.4 Assemble Diagonal Matrices to Form Coefficient Matrix
351(1)
A.5 Incomplete Cholesky Conjugate Gradient (ICCG) Method
352(1)
A.6 2-D Poisson Solver
352(2)
A.7 Triangular Mesh Generation Program of Persson and Strang
354(1)
A.8 Useful Accessory Functions to Triangular Mesh Generation Program of Persson and Strang
355(1)
B Von Neumann Analysis of FTCS Scheme
356(5)
Notes
359(2)
References 361(5)
Index 366
Dr. George (Zhaohui) Qin is currently an associate professor in the School of Engineering and Computer Science of Cedarville University at Cedarville, Ohio. George obtained his B.S. and M.S. degrees in Mechanical Engineering from Shanghai Jiaotong University of China. He carried out research on large eddy simulation (LES) of turbulent flows in rotating ducts under supervision of Dr. Richard Pletcher of Iowa State University for his Ph.D. degree. Upon receiving his degree in 2007, George began to work as a lecturer and post-doc research fellow in Iowa State University. He moved to Cedarville University in 2012. George teaches and researches in the general thermal-fluids area including Thermodynamics, Fluid Mechanics, Heat Transfer, Computational Fluid Dynamics, and Turbulent Flows.