Muutke küpsiste eelistusi

E-raamat: Computational Problems for Physics: With Guided Solutions Using Python [Taylor & Francis e-raamat]

, (Distinguished Professor Emeritus, Oregon State University, USA)
  • Formaat: 430 pages, 8 Tables, black and white; 129 Illustrations, black and white
  • Sari: Series in Computational Physics
  • Ilmumisaeg: 04-Jun-2018
  • Kirjastus: CRC Press
  • ISBN-13: 9781315202099
Teised raamatud teemal:
  • Taylor & Francis e-raamat
  • Hind: 170,80 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 244,00 €
  • Säästad 30%
  • Formaat: 430 pages, 8 Tables, black and white; 129 Illustrations, black and white
  • Sari: Series in Computational Physics
  • Ilmumisaeg: 04-Jun-2018
  • Kirjastus: CRC Press
  • ISBN-13: 9781315202099
Teised raamatud teemal:
Our future scientists and professionals must be conversant in computational techniques. In order to facilitate integration of computer methods into existing physics courses, this textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple). Its also intended as a self-study guide for learning how to use computer methods in physics. The authors include an introductory chapter on numerical tools and indication of computational and physics difficulty level for each problem. Readers also benefit from the following features:

Detailed explanations and solutions in various coding languages.

Problems are ranked based on computational and physics difficulty.

Basics of numerical methods covered in an introductory chapter.

Programming guidance via flowcharts and pseudocode.

Rubin Landau is a Distinguished Professor Emeritus in the Department of Physics at Oregon State University in Corvallis and a Fellow of the American Physical Society (Division of Computational Physics).

Manuel Jose Paez-Mejia is a Professor of Physics at Universidad de Antioquia in Medellín, Colombia.
Acknowledgments xi
Series Preface xiii
Preface xv
About the Authors xvii
1 Computational Basics for Physics 1(38)
1.1
Chapter Overview
1(1)
1.2 The Python Ecosystem
1(11)
1.2.1 Python Visualization Tools
2(6)
1.2.2 Python Matrix Tools
8(3)
1.2.3 Python Algebraic Tools
11(1)
1.3 Dealing with Floating Point Numbers
12(2)
1.3.1 Uncertainties in Computed Numbers
13(1)
1.4 Numerical Derivatives
14(1)
1.5 Numerical Integration
15(4)
1.5.1 Gaussian Quadrature
17(1)
1.5.2 Monte Carlo (Mean Value) Integration
17(2)
1.6 Random Number Generation
19(5)
1.6.1 Tests of Random Generators
21(1)
1.6.2 Central Limit Theorem
22(2)
1.7 Ordinary Differential Equations Algorithms
24(3)
1.7.1 Euler & Runge-Kutta Rules
25(2)
1.8 Partial Differential Equations Algorithms
27(1)
1.9 Code Listings
27(12)
2 Data Analytics for Physics 39(42)
2.1
Chapter Overview
39(1)
2.2 Root Finding
39(3)
2.3 Least-Squares Fitting
42(5)
2.3.1 Linear Least-Square Fitting
43(4)
2.4 Discrete Fourier Transforms (DFT)
47(4)
2.5 Fast Fourier Transforms (FFT)
51(3)
2.6 Noise Reduction
54(4)
2.6.1 Noise Reduction via Autocorrelation Function
54(2)
2.6.2 Noise Reduction via Digital Filters
56(2)
2.7 Spectral Analysis of Nonstationary Signals
58(7)
2.7.1 Short-Time Fourier Transforms
59(1)
2.7.2 Wavelet Analysis
60(4)
2.7.3 Discrete Wavelet Transforms, Multi-Resolution Analysis
64(1)
2.8 Principal Components Analysis (PCA)
65(3)
2.9 Fractal Dimension Determination
68(2)
2.10 Code Listings
70(11)
3 Classical & Nonlinear Dynamics 81(44)
3.1
Chapter Overview
81(10)
3.2 Oscillators
81(1)
3.2.1 First a Linear Oscillator
81(2)
3.2.2 Nonlinear Oscillators
83(2)
3.2.3 Assessing Precision via Energy Conservation
85(1)
3.2.4 Models of Friction
85(1)
3.2.5 Linear & Nonlinear Resonances
86(2)
3.2.6 Famous Nonlinear Oscillators
88(2)
3.2.7 Solution via Symbolic Computing
90(1)
3.3 Realistic Pendula
91(5)
3.3.1 Elliptic Integrals
93(1)
3.3.2 Period Algorithm
94(1)
3.3.3 Phase Space Orbits
94(2)
3.3.4 Vibrating Pivot Pendulum
96(1)
3.4 Fourier Analysis of Oscillations
96(3)
3.4.1 Pendulum Bifurcations
97(1)
3.4.2 Sonification
98(1)
3.5 The Double Pendulum
99(2)
3.6 Realistic Projectile Motion
101(3)
3.6.1 Trajectory of Thrown Baton
102(2)
3.7 Bound States
104(2)
3.8 Three-Body Problems: Neptune, Two Suns, Stars
106(3)
3.8.1 Two Fixed Suns with a Single Planet
107(1)
3.8.2 Henon-Heiles Bound States
108(1)
3.9 Scattering
109(5)
3.9.1 Rutherford Scattering
109(1)
3.9.2 Mott Scattering
110(2)
3.9.3 Chaotic Scattering
112(2)
3.10 Billiards
114(1)
3.11 Lagrangian and Hamiltonian Dynamics
115(3)
3.11.1 Hamilton's Principle
115(1)
3.11.2 Lagrangian & Hamiltonian Problems
116(2)
3.12 Weights Connected by Strings (Hard)
118(1)
3.13 Code Listings
119(6)
4 Wave Equations & Fluid Dynamics 125(44)
4.1
Chapter Overview
125(1)
4.2 String Waves
126(8)
4.2.1 Extended Wave Equations
128(2)
4.2.2 Computational Normal Modes
130(1)
4.2.3 Masses on Vibrating String
131(2)
4.2.4 Wave Equation for Large Amplitudes
133(1)
4.3 Membrane Waves
134(2)
4.4 Shock Waves
136(2)
4.4.1 Advective Transport
136(1)
4.4.2 Burgers' Equation
137(1)
4.5 Solitary Waves (Solitons)
138(6)
4.5.1 Including Dispersion, KdeV Solitons
139(2)
4.5.2 Pendulum Chain Solitons, Sine-Gordon Solitons
141(3)
4.6 Hydrodynamics
144(12)
4.6.1 Navier-Stokes Equation
144(2)
4.6.2 Flow over Submerged Beam
146(1)
4.6.3 Vorticity Form of Navier-Stokes Equation
147(3)
4.6.4 Torricelli's Law, Orifice Flow
150(3)
4.6.5 Inflow and Outflow from Square Box
153(1)
4.6.6 Chaotic Convective Flow
154(2)
4.7 Code Listings
156(13)
5 Electricity & Magnetism 169(60)
5.1
Chapter Overview
169(1)
5.2 Electric Potentials via Laplace's & Poisson's Equations
170(13)
5.2.1 Solutions via Finite Differences
170(3)
5.2.2 Laplace & Poisson Problems
173(3)
5.2.3 Fourier Series vs. Finite Differences
176(4)
5.2.4 Disk in Space, Polar Plots
180(1)
5.2.5 Potential within Grounded Wedge
180(1)
5.2.6 Charge between Parallel Planes
181(2)
5.3 E&M Waves via FDTD
183(9)
5.3.1 In Free Space
183(3)
5.3.2 In Dielectrics
186(1)
5.3.3 Circularly Polarized Waves
187(1)
5.3.4 Wave Plates
188(1)
5.3.5 Telegraph Line Waves
189(3)
5.4 Thin Film Interference of Light
192(2)
5.5 Electric Fields
194(5)
5.5.1 Vector Field Calculations & Visualizations
194(1)
5.5.2 Fields in Dielectrics
194(2)
5.5.3 Electric Fields via Integration
196(2)
5.5.4 Electric Fields via Images
198(1)
5.6 Magnetic Fields via Direct Integration
199(3)
5.6.1 Magnetic Field of Current Loop
200(2)
5.7 Motion of Charges in Magnetic Fields
202(4)
5.7.1 Mass Spectrometer
202(1)
5.7.2 Quadruple Focusing
203(2)
5.7.3 Magnetic Confinement
205(1)
5.8 Relativity in E&M
206(4)
5.8.1 Lorentz Transformations of Fields and Motion
206(2)
5.8.2 Two Interacting Charges, the Breit Interaction
208(1)
5.8.3 Field Propagation Effects
209(1)
5.9 Code Listings
210(19)
6 Quantum Mechanics 229(70)
6.1
Chapter Overview
229(1)
6.2 Bound States
230(6)
6.2.1 Bound States in 1-D Box (Semianalytic)
230(1)
6.2.2 Bound States in Arbitrary Potential (ODE Solver + Search)
231(2)
6.2.3 Bound States in Arbitrary Potential (Sloppy Shortcut)
233(1)
6.2.4 Relativistic Bound States of Klein-Gordon Equation
234(2)
6.3 Spontaneous Decay Simulation
236(2)
6.3.1 Fitting a Black Body Spectrum
238(1)
6.4 Wave Functions
238(2)
6.4.1 Harmonic Oscillator Wave Functions
238(2)
6.5 Partial Wave Expansions
240(2)
6.5.1 Associated Legendre Polynomials
241(1)
6.6 Hydrogen Wave Functions
242(2)
6.6.1 Hydrogen Radial Density
242(2)
6.6.2 Hydrogen 3-D Wave Functions
244(1)
6.7 Wave Packets
244(5)
6.7.1 Harmonic Oscillator Wave Packets
244(1)
6.7.2 Momentum Space Wave Packets
245(1)
6.7.3 Solving Time-Dependent Schrodinger Equation
246(2)
6.7.4 Time-Dependent Schrodinger with E Field
248(1)
6.8 Scattering
249(8)
6.8.1 Square Well Scattering
249(3)
6.8.2 Coulomb Scattering
252(2)
6.8.3 Three Disks Scattering; Quantum Chaos
254(2)
6.8.4 Chaotic Quantum Billiards
256(1)
6.9 Matrix Quantum Mechanics
257(8)
6.9.1 Momentum Space Bound States (Integral Equations)
257(2)
6.9.2 k Space Bound States Delta Shell Potential
259(1)
6.9.3 k Space Bound States Other Potentials
260(1)
6.9.4 Hydrogen Hyperfine Structure
261(2)
6.9.5 SU(3) Symmetry of Quarks
263(2)
6.10 Coherent States and Entanglement
265(9)
6.10.1 Glauber Coherent States
265(2)
6.10.2 Neutral Kaons as Superpositions of States
267(2)
6.10.3 Double Well Transitions
269(2)
6.10.4 Qubits
271(3)
6.11 Feynman Path Integral Quantum Mechanics
274(3)
6.12 Code Listings
277(22)
7 Thermodynamics & Statistical Physics 299(36)
7.1
Chapter Overview
299(1)
7.2 The Heat Equation
299(5)
7.2.1 Algorithm for Heat Equation
300(1)
7.2.2 Solutions for Various Geometries
301(3)
7.3 Random Processes
304(4)
7.3.1 Random Walks
304(2)
7.3.2 Diffusion-Limited Aggregation, a Fractal Walk
306(1)
7.3.3 Surface Deposition
307(1)
7.4 Thermal Behavior of Magnetic Materials
308(3)
7.4.1 Roots of a Magnetization vs. Temperature Equation
309(1)
7.4.2 Counting Spin States
309(2)
7.5 Ising Model
311(5)
7.5.1 Metropolis Algorithm
312(3)
7.5.2 Domain Formation
315(1)
7.5.3 Thermodynamic Properties
316(1)
7.5.4 Extensions
316(1)
7.6 Molecular Dynamics
316(6)
7.6.1 16 Particles in a Box
319(3)
7.7 Code Listings
322(13)
8 Biological Models: Population Dynamics & Plant Growth 335(22)
8.1
Chapter Overview
335(1)
8.2 The Logistic Map
335(10)
8.2.1 Other Discrete and Chaotic Maps
338(1)
8.3 Predator-Prey Dynamics
339(2)
8.3.1 Predator-Prey Chaos
341(2)
8.3.2 Including Prey Limits
343(1)
8.3.3 Including Predation Efficiency
343(2)
8.3.4 Two Predators, One Prey
345(1)
8.4 Growth Models
345(4)
8.4.1 Protein Folding as a Self-Avoiding Walk
346(1)
8.4.2 Plant Growth Simulations
347(1)
8.4.3 Barnsley's Fern
348(1)
8.4.4 Self-Affine Trees
349(1)
8.5 Code Listings
349(8)
9 Additional Entry-Level Problems 357(18)
9.1
Chapter Overview
357(1)
9.2 Specular Reflection and Numerical Precision
357(1)
9.3 Relativistic Rocket Golf
358(2)
9.4 Stable Points in Electric Fields
360(1)
9.5 Viewing Motion in Phase Space (Parametric Plots)
361(1)
9.6 Other Useful Visualizations
362(3)
9.7 Integrating Power into Energy
365(2)
9.8 Rigid-Body Rotations with Matrices
367(2)
9.9 Searching for Calibration of a Spherical Tank
369(1)
9.10 AC Circuits via Complex Numbers
370(3)
9.10.1 Using Complex Numbers
370(1)
9.10.2 RLC Circuit
371(2)
9.11 Beats and Satellites
373(2)
A Appendix: Python Codes 375(2)
Bibliography 377(8)
Index 385
Rubin Landau is a Distinguished Professor Emeritus in the Department of Physics at Oregon State University in Corvallis and a Fellow of the American Physical Society (Division of Computational Physics). His research specialty is computational studies of the scattering of elementary particles from subatomic systems and momentum space quantum mechanics. Landau has taught courses throughout the undergraduate and graduate curricula, and, for over 20 years, in computational physics. He was the founder of the OSU Computational Physics degree program, an Executive Committee member of the APS Division of Computational Physics, and the AAPT Technology Committee. At present Landau is the Education co-editor for AIP/IEEE Computing in Science & Engineering and co-editor of this Taylor & Francis book series on computational physics. He has been a member of the XSEDE advisory committee and has been part of the Education Program at the SuperComputing (SC) conferences for over a decade.

Manuel Jose Paez-Mejia has been a Professor of Physics at Universidad de Antioquia in Medellín, Colombia since January 1969. He has been teaching courses in Modern Physics, Nuclear Physics, Computational Physics, Numerical Methods, Mathematical Physics, and Programming in Fortran, Pascal, and C languages. He has authored scientific papers in nuclear physics and computational physics, as well as texts on the C Language, General Physics, and Computational Physics (coauthored with Rubin Landau and Cristian Bordeianu). In the past, he and Landau conducted pioneering computational investigations of the interactions of mesons and nucleons with few-body nuclei. Professor Paez has led workshop in Computational Physics throughout Latin America, and has been Director of Graduate Studies in Physics at the Universidad de Antioquia.