Muutke küpsiste eelistusi

E-raamat: CRC Standard Mathematical Tables and Formulas 33rd edition [Taylor & Francis e-raamat]

Edited by (Rensselaer Polytechnic Institute, NY, USA)
  • Formaat: 872 pages, 345 Tables, black and white
  • Sari: Advances in Applied Mathematics
  • Ilmumisaeg: 11-Jan-2018
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-13: 9781315154978
Teised raamatud teemal:
  • Taylor & Francis e-raamat
  • Hind: 147,72 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 211,02 €
  • Säästad 30%
  • Formaat: 872 pages, 345 Tables, black and white
  • Sari: Advances in Applied Mathematics
  • Ilmumisaeg: 11-Jan-2018
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-13: 9781315154978
Teised raamatud teemal:
Containing more than 6,000 entries, CRC Standard Mathematical Tables and Formulas, 33rd Edition continues to provide essential formulas, tables, figures and detailed descriptions. The newest edition of this popular series also features many diagrams, group tables, and integrals that are not available online.

This edition also incorporates important topics such as max plus algebra, financial options, pseudospectra, and proof methods. Newly updated topics reflecting new results include couple analogues, radar, and significant equations of mathematics.

New features of the 33rd edition include:











Larger trim size, five new topics, and topics which have been modified to update results





Provides practical, ready-to-use information and covers important topics that are unfamiliar to many readers, such as visual proofs and sequences





Includes hard-to-find and more complete information than found in the Internet such as table of conformal mappings and integral tables





Adds descriptions of new functions: Lambert, prolate spheroidal, and Weierstrass

Even though the book has been updated it retains the same successful format of previous editions in that material is still presented in a multi-sectional format.
Preface xi
Chapter 1 Numbers and Elementary Mathematics
1(66)
1.1 Proofs without words
3(2)
1.2 Constants
5(8)
1.3 Special numbers
13(11)
1.4 Interval analysis
24(1)
1.5 Fractal Arithmetic
25(1)
1.6 Max-Plus Algebra
26(1)
1.7 Coupled-analogues of Functions
27(1)
1.8 Number theory
28(19)
1.9 Series and products
47(20)
Chapter 2 Algebra
67(66)
2.1 Elementary algebra
69(4)
2.2 Polynomials
73(5)
2.3 Vector algebra
78(5)
2.4 Linear and matrix algebra
83(23)
2.5 Abstract algebra
106(27)
Chapter 3 Discrete Mathematics
133(58)
3.1 Sets
135(5)
3.2 Combinatorics
140(11)
3.3 Graphs
151(21)
3.4 Combinatorial design theory
172(12)
3.5 Difference equations
184(7)
Chapter 4 Geometry
191(84)
4.1 Euclidean geometry
193(1)
4.2 Grades and Degrees
193(1)
4.3 Coordinate systems in the plane
194(6)
4.4 Plane symmetries or isometries
200(7)
4.5 Other transformations of the plane
207(2)
4.6 Lines
209(2)
4.7 Polygons
211(8)
4.8 Surfaces of revolution: the torus
219(1)
4.9 Quadrics
219(5)
4.10 Spherical geometry and trigonometry
224(5)
4.11 Conies
229(11)
4.12 Special plane curves
240(9)
4.13 Coordinate systems in space
249(3)
4.14 Space symmetries or isometries
252(3)
4.15 Other transformations of space
255(2)
4.16 Direction angles and direction cosines
257(1)
4.17 Planes
257(2)
4.18 Lines in space
259(2)
4.19 Polyhedra
261(4)
4.20 Cylinders
265(1)
4.21 Cones
265(2)
4.22 Differential geometry
267(8)
Chapter 5 Analysis
275(144)
5.1 Differential calculus
277(11)
5.2 Differential forms
288(3)
5.3 Integration
291(14)
5.4 Table of indefinite integrals
305(38)
5.5 Table of definite integrals
343(7)
5.6 Ordinary differential equations
350(12)
5.7 Partial differential equations
362(13)
5.8 Integral equations
375(3)
5.9 Tensor analysis
378(10)
5.10 Orthogonal coordinate systems
388(5)
5.11 Real analysis
393(10)
5.12 Generalized functions
403(2)
5.13 Complex analysis
405(12)
5.14 Significant Mathematical Equations
417(2)
Chapter 6 Special Functions
419(114)
6.1 Ceiling and floor functions
421(1)
6.2 Exponentiation
421(1)
6.3 Exponential function
422(1)
6.4 Logarithmic functions
422(2)
6.5 Trigonometric functions
424(9)
6.6 Circular functions and planar triangles
433(4)
6.7 Tables of trigonometric functions
437(3)
6.8 Angle conversion
440(1)
6.9 Inverse circular functions
441(2)
6.10 Hyperbolic functions
443(4)
6.11 Inverse hyperbolic functions
447(2)
6.12 Gudermannian function
449(2)
6.13 Orthogonal polynomials
451(7)
6.14 Clebsch--Gordan coefficients
458(2)
6.15 Bessel functions
460(9)
6.16 Beta function
469(1)
6.17 Elliptic integrals
470(3)
6.18 Jacobian elliptic functions
473(2)
6.19 Error functions
475(1)
6.20 Fresnel integrals
476(2)
6.21 Gamma function
478(3)
6.22 Hypergeometric functions
481(2)
6.23 Lambert Function
483(1)
6.24 Legendre functions
484(4)
6.25 Polylogarithms
488(1)
6.26 Prolate Spheroidal Wave Functions
489(1)
6.27 Sine, cosine, and exponential integrals
490(2)
6.28 Weierstrass Elliptic Function
492(1)
6.29 Integral transforms: List
493(1)
6.30 Integral transforms: Preliminaries
494(1)
6.31 Fourier integral transform
494(6)
6.32 Discrete Fourier transform (DFT)
500(2)
6.33 Fast Fourier transform (FFT)
502(1)
6.34 Multidimensional Fourier transforms
502(1)
6.35 Hankel transform
503(1)
6.36 Hartley transform
504(1)
6.37 Hilbert transform
505(3)
6.38 Laplace transform
508(4)
6.39 Mellin transform
512(1)
6.40 Z-Transform
512(5)
6.41 Tables of transforms
517(16)
Chapter 7 Probability and Statistics
533(112)
7.1 Probability theory
535(10)
7.2 Classical probability problems
545(8)
7.3 Probability distributions
553(9)
7.4 Queuing theory
562(3)
7.5 Markov chains
565(3)
7.6 Random number generation
568(6)
7.7 Random matrices
574(1)
7.8 Control charts and reliability
575(5)
7.9 Statistics
580(8)
7.10 Confidence intervals
588(7)
7.11 Tests of hypotheses
595(14)
7.12 Linear regression
609(4)
7.13 Analysis of variance (ANOVA)
613(7)
7.14 Sample size
620(3)
7.15 Contingency tables
623(3)
7.16 Acceptance sampling
626(2)
7.17 Probability tables
628(17)
Chapter 8 Scientific Computing
645(44)
8.1 Basic numerical analysis
646(13)
8.2 Numerical linear algebra
659(9)
8.3 Numerical integration and differentiation
668(20)
8.4 Programming techniques
688(1)
Chapter 9 Mathematical Formulas from the Sciences
689(36)
9.1 Acoustics
691(1)
9.2 Astrophysics
692(2)
9.3 Atmospheric physics
694(1)
9.4 Atomic Physics
695(1)
9.5 Basic mechanics
696(2)
9.6 Beam dynamics
698(1)
9.7 Biological Models
699(1)
9.8 Chemistry
700(1)
9.9 Classical mechanics
701(1)
9.10 Coordinate systems -- Astronomical
702(1)
9.11 Coordinate systems -- Terrestrial
703(1)
9.12 Earthquake engineering
704(1)
9.13 Economics (Macro)
705(2)
9.14 Electromagnetic Transmission
707(1)
9.15 Electrostatics and magnetism
708(1)
9.16 Electromagnetic Field Equations
709(1)
9.17 Electronic circuits
710(1)
9.18 Epidemiology
711(1)
9.19 Fluid mechanics
712(1)
9.20 Human body
713(1)
9.21 Modeling physical systems
714(1)
9.22 Optics
715(1)
9.23 Population genetics
716(1)
9.24 Quantum mechanics
717(2)
9.25 Quaternions
719(1)
9.26 Radar
720(1)
9.27 Relativistic mechanics
721(1)
9.28 Solid mechanics
722(1)
9.29 Statistical mechanics
723(1)
9.30 Thermodynamics
724(1)
Chapter 10 Miscellaneous
725(80)
10.1 Calendar computations
727(1)
10.2 Cellular automata
728(1)
10.3 Communication theory
729(5)
10.4 Control theory
734(2)
10.5 Computer languages
736(1)
10.6 Compressive Sensing
737(1)
10.7 Constrained Least Squares
738(1)
10.8 Cryptography
739(1)
10.9 Discrete dynamical systems and chaos
740(3)
10.10 Elliptic curves
743(3)
10.11 Financial formulas
746(8)
10.12 Game theory
754(3)
10.13 Knot theory
757(2)
10.14 Lattices
759(2)
10.15 Logic
761(5)
10.16 Moments of inertia
766(1)
10.17 Music
767(2)
10.18 Operations research
769(12)
10.19 Proof Methods
781(1)
10.20 Recreational mathematics
782(1)
10.21 Risk analysis and decision rules
783(2)
10.22 Signal processing
785(9)
10.23 Units
794(7)
10.24 Voting power
801(2)
10.25 Greek alphabet
803(1)
10.26 Braille code
803(1)
10.27 Morse code
803(1)
10.28 Bar Codes
804(1)
List of References 805(4)
List of Figures 809(2)
List of Notations 811(8)
Index 819
Dan Zwillinger has more than 30 years of proven technical expertise in numerous areas of engineering and the physical sciences. He earned a Ph.D. in applied mathematics from the California Institute of Technology.