Preface |
|
xxi | |
Editor Biographies |
|
xxiii | |
Contributors |
|
xxv | |
1 An Introduction to Cluster Analysis |
|
1 | (28) |
|
|
|
2 | (1) |
|
1.2 Common Techniques Used in Cluster Analysis |
|
|
3 | (12) |
|
1.2.1 Feature Selection Methods |
|
|
4 | (1) |
|
1.2.2 Probabilistic and Generative Models |
|
|
4 | (1) |
|
1.2.3 Distance-Based Algorithms |
|
|
5 | (2) |
|
1.2.4 Density- and Grid-Based Methods |
|
|
7 | (1) |
|
1.2.5 Leveraging Dimensionality Reduction Methods |
|
|
8 | (3) |
|
1.2.5.1 Generative Models for Dimensionality Reduction |
|
|
8 | (1) |
|
1.2.5.2 Matrix Factorization and Co-Clustering |
|
|
8 | (2) |
|
|
10 | (1) |
|
1.2.6 The High Dimensional Scenario |
|
|
11 | (2) |
|
1.2.7 Scalable Techniques for Cluster Analysis |
|
|
13 | (2) |
|
1.2.7.1 I/O Issues in Database Management |
|
|
13 | (1) |
|
1.2.7.2 Streaming Algorithms |
|
|
14 | (1) |
|
1.2.7.3 The Big Data Framework |
|
|
14 | (1) |
|
1.3 Data Types Studied in Cluster Analysis |
|
|
15 | (4) |
|
1.3.1 Clustering Categorical Data |
|
|
15 | (1) |
|
1.3.2 Clustering Text Data |
|
|
16 | (1) |
|
1.3.3 Clustering Multimedia Data |
|
|
16 | (1) |
|
1.3.4 Clustering Time-Series Data |
|
|
17 | (1) |
|
1.3.5 Clustering Discrete Sequences |
|
|
17 | (1) |
|
1.3.6 Clustering Network Data |
|
|
18 | (1) |
|
1.3.7 Clustering Uncertain Data |
|
|
19 | (1) |
|
1.4 Insights Gained from Different Variations of Cluster Analysis |
|
|
19 | (3) |
|
|
20 | (1) |
|
1.4.2 Supervised Insights |
|
|
20 | (1) |
|
1.4.3 Multiview and Ensemble-Based Insights |
|
|
21 | (1) |
|
1.4.4 Validation-Based Insights |
|
|
21 | (1) |
|
1.5 Discussion and Conclusions |
|
|
22 | (7) |
2 Feature Selection for Clustering: A Review |
|
29 | (32) |
|
|
|
|
|
30 | (5) |
|
|
32 | (1) |
|
|
32 | (1) |
|
2.1.3 Feature Selection for Clustering |
|
|
33 | (2) |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
35 | (1) |
|
2.2 Feature Selection for Clustering |
|
|
35 | (18) |
|
2.2.1 Algorithms for Generic Data |
|
|
36 | (5) |
|
2.2.1.1 Spectral Feature Selection (SPEC) |
|
|
36 | (1) |
|
2.2.1.2 Laplacian Score (LS) |
|
|
36 | (1) |
|
2.2.1.3 Feature Selection for Sparse Clustering |
|
|
37 | (1) |
|
2.2.1.4 Localized Feature Selection Based on Scatter Separability (LFSBSS) |
|
|
38 | (1) |
|
2.2.1.5 Multicluster Feature Selection (MCFS) |
|
|
39 | (1) |
|
2.2.1.6 Feature Weighting k-Means |
|
|
40 | (1) |
|
2.2.2 Algorithms for Text Data |
|
|
41 | (6) |
|
2.2.2.1 Term Frequency (TF) |
|
|
41 | (1) |
|
2.2.2.2 Inverse Document Frequency (IDF) |
|
|
42 | (1) |
|
2.2.2.3 Term Frequency-Inverse Document Frequency (TF-IDF) |
|
|
42 | (1) |
|
2.2.2.4 Chi Square Statistic |
|
|
42 | (2) |
|
2.2.2.5 Frequent Term-Based Text Clustering |
|
|
44 | (1) |
|
2.2.2.6 Frequent Term Sequence |
|
|
45 | (2) |
|
2.2.3 Algorithms for Streaming Data |
|
|
47 | (3) |
|
2.2.3.1 Text Stream Clustering Based on Adaptive Feature Selection (TSC-AFS) |
|
|
47 | (1) |
|
2.2.3.2 High-Dimensional Projected Stream Clustering (HPStream) |
|
|
48 | (2) |
|
2.2.4 Algorithms for Linked Data |
|
|
50 | (3) |
|
2.2.4.1 Challenges and Opportunities |
|
|
50 | (1) |
|
2.2.4.2 LUFS: An Unsupervised Feature Selection Framework for Linked Data |
|
|
51 | (1) |
|
2.2.4.3 Conclusion and Future Work for Linked Data |
|
|
52 | (1) |
|
2.3 Discussions and Challenges |
|
|
53 | (8) |
|
2.3.1 The Chicken or the Egg Dilemma |
|
|
53 | (1) |
|
2.3.2 Model Selection: K and l |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (6) |
3 Probabilistic Models for Clustering |
|
61 | (26) |
|
|
|
|
61 | (1) |
|
|
62 | (7) |
|
|
62 | (2) |
|
3.2.2 Gaussian Mixture Model |
|
|
64 | (3) |
|
3.2.3 Bernoulli Mixture Model |
|
|
67 | (1) |
|
3.2.4 Model Selection Criteria |
|
|
68 | (1) |
|
3.3 EM Algorithm and Its Variations |
|
|
69 | (7) |
|
3.3.1 The General EM Algorithm |
|
|
69 | (4) |
|
3.3.2 Mixture Models Revisited |
|
|
73 | (2) |
|
3.3.3 Limitations of the EM Algorithm |
|
|
75 | (1) |
|
3.3.4 Applications of the EM Algorithm |
|
|
76 | (1) |
|
3.4 Probabilistic Topic Models |
|
|
76 | (5) |
|
3.4.1 Probabilistic Latent Semantic Analysis |
|
|
77 | (2) |
|
3.4.2 Latent Dirichlet Allocation |
|
|
79 | (2) |
|
3.4.3 Variations and Extensions |
|
|
81 | (1) |
|
3.5 Conclusions and Summary |
|
|
81 | (6) |
4 A Survey of Partitional and Hierarchical Clustering Algorithms |
|
87 | (24) |
|
|
|
|
88 | (1) |
|
4.2 Partitional Clustering Algorithms |
|
|
89 | (11) |
|
|
89 | (1) |
|
4.2.2 Minimization of Sum of Squared Errors |
|
|
90 | (1) |
|
4.2.3 Factors Affecting K-Means |
|
|
91 | (2) |
|
4.2.3.1 Popular Initialization Methods |
|
|
91 | (1) |
|
4.2.3.2 Estimating the Number of Clusters |
|
|
92 | (1) |
|
4.2.4 Variations of K-Means |
|
|
93 | (7) |
|
4.2.4.1 K-Medoids Clustering |
|
|
93 | (1) |
|
4.2.4.2 K-Medians Clustering |
|
|
94 | (1) |
|
4.2.4.3 K-Modes Clustering |
|
|
94 | (1) |
|
4.2.4.4 Fuzzy K-Means Clustering |
|
|
95 | (1) |
|
4.2.4.5 X-Means Clustering |
|
|
95 | (1) |
|
4.2.4.6 Intelligent K-Means Clustering |
|
|
96 | (1) |
|
4.2.4.7 Bisecting K-Means Clustering |
|
|
97 | (1) |
|
4.2.4.8 Kernel K-Means Clustering |
|
|
97 | (1) |
|
4.2.4.9 Mean Shift Clustering |
|
|
98 | (1) |
|
4.2.4.10 Weighted K-Means Clustering |
|
|
98 | (1) |
|
4.2.4.11 Genetic K-Means Clustering |
|
|
99 | (1) |
|
4.2.5 Making K-Means Faster |
|
|
100 | (1) |
|
4.3 Hierarchical Clustering Algorithms |
|
|
100 | (6) |
|
4.3.1 Agglomerative Clustering |
|
|
101 | (3) |
|
4.3.1.1 Single and Complete Link |
|
|
101 | (1) |
|
4.3.1.2 Group Averaged and Centroid Agglomerative Clustering . |
|
|
102 | (1) |
|
|
103 | (1) |
|
4.3.1.4 Agglomerative Hierarchical Clustering Algorithm |
|
|
103 | (1) |
|
4.3.1.5 Lance-Williams Dissimilarity Update Formula |
|
|
103 | (1) |
|
4.3.2 Divisive Clustering |
|
|
104 | (2) |
|
4.3.2.1 Issues in Divisive Clustering |
|
|
104 | (1) |
|
4.3.2.2 Divisive Hierarchical Clustering Algorithm |
|
|
105 | (1) |
|
4.3.2.3 Minimum Spanning Tree-Based Clustering |
|
|
105 | (1) |
|
4.3.3 Other Hierarchical Clustering Algorithms |
|
|
106 | (1) |
|
4.4 Discussion and Summary |
|
|
106 | (5) |
5 Density-Based Clustering |
|
111 | (16) |
|
|
|
111 | (2) |
|
|
113 | (2) |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
116 | (2) |
|
|
118 | (2) |
|
|
120 | (3) |
|
|
123 | (1) |
|
|
124 | (3) |
6 Grid-Based Clustering |
|
127 | (22) |
|
|
|
|
|
128 | (3) |
|
6.2 The Classical Algorithms |
|
|
131 | (4) |
|
6.2.1 Earliest Approaches: GRIDCLUS and BANG |
|
|
131 | (1) |
|
6.2.2 STING and STING+: The Statistical Information Grid Approach |
|
|
132 | (2) |
|
6.2.3 WaveCluster: Wavelets in Grid-Based Clustering |
|
|
134 | (1) |
|
6.3 Adaptive Grid-Based Algorithms |
|
|
135 | (1) |
|
6.3.1 AMR: Adaptive Mesh Refinement Clustering |
|
|
135 | (1) |
|
6.4 Axis-Shifting Grid-Based Algorithms |
|
|
136 | (3) |
|
6.4.1 NSGC: New Shifting Grid Clustering Algorithm |
|
|
136 | (1) |
|
6.4.2 ADCC: Adaptable Deflect and Conquer Clustering |
|
|
137 | (1) |
|
6.4.3 ASGC: Axis-Shifted Grid-Clustering |
|
|
137 | (1) |
|
6.4.4 GDILC: Grid-Based Density-IsoLine Clustering Algorithm |
|
|
138 | (1) |
|
6.5 High-Dimensional Algorithms |
|
|
139 | (6) |
|
6.5.1 CLIQUE: The Classical High-Dimensional Algorithm |
|
|
139 | (1) |
|
|
140 | (1) |
|
6.5.2.1 ENCLUS: Entropy-Based Approach |
|
|
140 | (1) |
|
6.5.2.2 MAFIA: Adaptive Grids in High Dimensions |
|
|
141 | (1) |
|
6.5.3 OptiGrid: Density-Based Optimal Grid Partitioning |
|
|
141 | (2) |
|
6.5.4 Variants of the OptiGrid Approach |
|
|
143 | (7) |
|
6.5.4.1 0-Cluster: A Scalable Approach |
|
|
143 | (1) |
|
6.5.4.2 CBF: Cell-Based Filtering |
|
|
144 | (1) |
|
6.6 Conclusions and Summary |
|
|
145 | (4) |
7 Nonnegative Matrix Factorizations for Clustering: A Survey |
|
149 | (28) |
|
|
|
|
150 | (1) |
|
|
150 | (1) |
|
|
151 | (1) |
|
7.2 NMF for Clustering: Theoretical Foundations |
|
|
151 | (2) |
|
7.2.1 NMF and K-Means Clustering |
|
|
151 | (1) |
|
7.2.2 NMF and Probabilistic Latent Semantic Indexing |
|
|
152 | (1) |
|
7.2.3 NMF and Kernel K-Means and Spectral Clustering |
|
|
152 | (1) |
|
7.2.4 NMF Boundedness Theorem |
|
|
153 | (1) |
|
7.3 NMF Clustering Capabilities |
|
|
153 | (2) |
|
|
153 | (1) |
|
|
153 | (2) |
|
|
155 | (3) |
|
|
155 | (1) |
|
7.4.2 Algorithm Development |
|
|
155 | (1) |
|
7.4.3 Practical Issues in NMF Algorithms |
|
|
156 | (5) |
|
|
156 | (1) |
|
7.4.3.2 Stopping Criteria |
|
|
156 | (1) |
|
7.4.3.3 Objective Function vs. Clustering Performance |
|
|
157 | (1) |
|
|
157 | (1) |
|
7.5 NMF Related Factorizations |
|
|
158 | (3) |
|
7.6 NMF for Clustering: Extensions |
|
|
161 | (4) |
|
|
161 | (1) |
|
7.6.2 Semisupervised Clustering |
|
|
162 | (1) |
|
7.6.3 Semisupervised Co-Clustering |
|
|
162 | (1) |
|
7.6.4 Consensus Clustering |
|
|
163 | (1) |
|
|
164 | (1) |
|
7.6.6 Other Clustering Extensions |
|
|
164 | (1) |
|
|
165 | (12) |
8 Spectral Clustering |
|
177 | (24) |
|
|
|
|
177 | (2) |
|
|
179 | (1) |
|
8.3 Unnormalized Spectral Clustering |
|
|
180 | (2) |
|
|
180 | (1) |
|
8.3.2 Unnormalized Graph Laplacian |
|
|
180 | (1) |
|
|
181 | (1) |
|
8.3.4 Unnormalized Spectral Clustering Algorithm |
|
|
182 | (1) |
|
8.4 Normalized Spectral Clustering |
|
|
182 | (3) |
|
8.4.1 Normalized Graph Laplacian |
|
|
183 | (1) |
|
|
184 | (1) |
|
8.4.3 Normalized Spectral Clustering Algorithm |
|
|
184 | (1) |
|
|
185 | (3) |
|
8.5.1 Ratio Cut Relaxation |
|
|
186 | (1) |
|
8.5.2 Normalized Cut Relaxation |
|
|
187 | (1) |
|
|
188 | (1) |
|
8.7 Connection to Laplacian Eigenmap |
|
|
189 | (2) |
|
8.8 Connection to Kernel k-Means and Nonnegative Matrix Factorization |
|
|
191 | (1) |
|
8.9 Large Scale Spectral Clustering |
|
|
192 | (2) |
|
|
194 | (7) |
9 Clustering High-Dimensional Data |
|
201 | (30) |
|
|
|
201 | (1) |
|
9.2 The "Curse of Dimensionality" |
|
|
202 | (4) |
|
9.2.1 Different Aspects of the "Curse" |
|
|
202 | (4) |
|
|
206 | (1) |
|
9.3 Clustering Tasks in Subspaces of High-Dimensional Data |
|
|
206 | (2) |
|
9.3.1 Categories of Subspaces |
|
|
206 | (1) |
|
9.3.1.1 Axis-Parallel Subspaces |
|
|
206 | (1) |
|
9.3.1.2 Arbitrarily Oriented Subspaces |
|
|
207 | (1) |
|
|
207 | (1) |
|
9.3.2 Search Spaces for the Clustering Problem |
|
|
207 | (1) |
|
9.4 Fundamental Algorithmic Ideas |
|
|
208 | (10) |
|
9.4.1 Clustering in Axis-Parallel Subspaces |
|
|
208 | (7) |
|
|
208 | (1) |
|
|
208 | (2) |
|
9.4.1.3 Clustering Algorithms |
|
|
210 | (5) |
|
9.4.2 Clustering in Arbitrarily Oriented Subspaces |
|
|
215 | (18) |
|
|
215 | (1) |
|
9.4.2.2 Basic Techniques and Example Algorithms |
|
|
216 | (2) |
|
9.5 Open Questions and Current Research Directions |
|
|
218 | (1) |
|
|
219 | (12) |
10 A Survey of Stream Clustering Algorithms |
|
231 | (28) |
|
|
|
231 | (2) |
|
10.2 Methods Based on Partitioning Representatives |
|
|
233 | (6) |
|
10.2.1 The STREAM Algorithm |
|
|
233 | (2) |
|
10.2.2 CluStream: The Microclustering Framework |
|
|
235 | (4) |
|
10.2.2.1 Microcluster Definition |
|
|
235 | (1) |
|
10.2.2.2 Pyramidal Time Frame |
|
|
236 | (1) |
|
10.2.2.3 Online Clustering with CluStream |
|
|
237 | (2) |
|
10.3 Density-Based Stream Clustering |
|
|
239 | (4) |
|
10.3.1 DenStream: Density-Based Microclustering |
|
|
240 | (1) |
|
10.3.2 Grid-Based Streaming Algorithms |
|
|
241 | (2) |
|
10.3.2.1 D-Stream Algorithm |
|
|
241 | (1) |
|
10.3.2.2 Other Grid-Based Algorithms |
|
|
242 | (1) |
|
10.4 Probabilistic Streaming Algorithms |
|
|
243 | (1) |
|
10.5 Clustering High-Dimensional Streams |
|
|
243 | (2) |
|
10.5.1 The HPSTREAM Method |
|
|
244 | (1) |
|
10.5.2 Other High-Dimensional Streaming Algorithms |
|
|
244 | (1) |
|
10.6 Clustering Discrete and Categorical Streams |
|
|
245 | (4) |
|
10.6.1 Clustering Binary Data Streams with k-Means |
|
|
245 | (1) |
|
10.6.2 The StreamCluCD Algorithm |
|
|
245 | (1) |
|
10.6.3 Massive-Domain Clustering |
|
|
246 | (3) |
|
10.7 Text Stream Clustering |
|
|
249 | (3) |
|
10.8 Other Scenarios for Stream Clustering |
|
|
252 | (2) |
|
10.8.1 Clustering Uncertain Data Streams |
|
|
253 | (1) |
|
10.8.2 Clustering Graph Streams |
|
|
253 | (1) |
|
10.8.3 Distributed Clustering of Data Streams |
|
|
254 | (1) |
|
10.9 Discussion and Conclusions |
|
|
254 | (5) |
11 Big Data Clustering |
|
259 | (18) |
|
|
|
|
259 | (1) |
|
11.2 One-Pass Clustering Algorithms |
|
|
260 | (3) |
|
11.2.1 CLARANS: Fighting with Exponential Search Space |
|
|
260 | (1) |
|
11.2.2 BIRCH: Fighting with Limited Memory |
|
|
261 | (2) |
|
11.2.3 CURE: Fighting with the Irregular Clusters |
|
|
263 | (1) |
|
11.3 Randomized Techniques for Clustering Algorithms |
|
|
263 | (5) |
|
11.3.1 Locality-Preserving Projection |
|
|
264 | (2) |
|
|
266 | (2) |
|
11.4 Parallel and Distributed Clustering Algorithms |
|
|
268 | (6) |
|
|
268 | (1) |
|
11.4.2 DBDC: Density-Based Clustering |
|
|
269 | (1) |
|
11.4.3 ParMETIS: Graph Partitioning |
|
|
269 | (1) |
|
11.4.4 PKMeans: K-Means with MapReduce |
|
|
270 | (1) |
|
11.4.5 DisCo: Co-Clustering with MapReduce |
|
|
271 | (1) |
|
11.4.6 BoW: Subspace Clustering with MapReduce |
|
|
272 | (2) |
|
|
274 | (3) |
12 Clustering Categorical Data |
|
277 | (28) |
|
|
|
278 | (1) |
|
12.2 Goals of Categorical Clustering |
|
|
279 | (3) |
|
12.2.1 Clustering Road Map |
|
|
280 | (2) |
|
12.3 Similarity Measures for Categorical Data |
|
|
282 | (2) |
|
12.3.1 The Hamming Distance in Categorical and Binary Data |
|
|
282 | (1) |
|
12.3.2 Probabilistic Measures |
|
|
283 | (1) |
|
12.3.3 Information-Theoretic Measures |
|
|
283 | (1) |
|
12.3.4 Context-Based Similarity Measures |
|
|
284 | (1) |
|
12.4 Descriptions of Algorithms |
|
|
284 | (14) |
|
12.4.1 Partition-Based Clustering |
|
|
284 | (3) |
|
|
284 | (1) |
|
12.4.1.2 k-Prototypes (Mixed Categorical and Numerical) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
286 | (1) |
|
|
286 | (1) |
|
12.4.2 Hierarchical Clustering |
|
|
287 | (2) |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
289 | (1) |
|
12.4.3 Density-Based Clustering |
|
|
289 | (7) |
|
12.4.3.1 Projected (Subspace) Clustering |
|
|
290 | (1) |
|
|
290 | (1) |
|
|
291 | (1) |
|
|
291 | (1) |
|
|
292 | (1) |
|
12.4.3.6 HIERDENC: Hierarchical Density-Based Clustering |
|
|
292 | (1) |
|
12.4.3.7 MULIC: Multiple Layer Incremental Clustering |
|
|
293 | (3) |
|
12.4.4 Model-Based Clustering |
|
|
296 | (10) |
|
12.4.4.1 BILCOM Empirical Bayesian (Mixed Categorical and Numerical) |
|
|
296 | (1) |
|
12.4.4.2 AutoClass (Mixed Categorical and Numerical) |
|
|
296 | (1) |
|
12.4.4.3 SVM Clustering (Mixed Categorical and Numerical) |
|
|
297 | (1) |
|
|
298 | (7) |
13 Document Clustering: The Next Frontier |
|
305 | (34) |
|
|
|
|
|
306 | (1) |
|
|
306 | (5) |
|
|
306 | (1) |
|
13.2.2 The Vector Space Model |
|
|
307 | (2) |
|
13.2.3 Alternate Document Models |
|
|
309 | (1) |
|
13.2.4 Dimensionality Reduction for Text |
|
|
309 | (1) |
|
13.2.5 Characterizing Extremes |
|
|
310 | (1) |
|
13.3 General Purpose Document Clustering |
|
|
311 | (4) |
|
13.3.1 Similarity/Dissimilarity-Based Algorithms |
|
|
311 | (1) |
|
13.3.2 Density-Based Algorithms |
|
|
312 | (1) |
|
13.3.3 Adjacency-Based Algorithms |
|
|
313 | (1) |
|
13.3.4 Generative Algorithms |
|
|
313 | (2) |
|
13.4 Clustering Long Documents |
|
|
315 | (8) |
|
13.4.1 Document Segmentation |
|
|
315 | (2) |
|
13.4.2 Clustering Segmented Documents |
|
|
317 | (4) |
|
13.4.3 Simultaneous Segment Identification and Clustering |
|
|
321 | (2) |
|
13.5 Clustering Short Documents |
|
|
323 | (5) |
|
13.5.1 General Methods for Short Document Clustering |
|
|
323 | (1) |
|
13.5.2 Clustering with Knowledge Infusion |
|
|
324 | (1) |
|
13.5.3 Clustering Web Snippets |
|
|
325 | (1) |
|
13.5.4 Clustering Microblogs |
|
|
326 | (2) |
|
|
328 | (11) |
14 Clustering Multimedia Data |
|
339 | (18) |
|
|
|
|
|
|
|
340 | (1) |
|
14.2 Clustering with Image Data |
|
|
340 | (7) |
|
14.2.1 Visual Words Learning |
|
|
341 | (1) |
|
14.2.2 Face Clustering and Annotation |
|
|
342 | (1) |
|
14.2.3 Photo Album Event Recognition |
|
|
343 | (1) |
|
14.2.4 Image Segmentation |
|
|
344 | (1) |
|
14.2.5 Large-Scale Image Classification |
|
|
345 | (2) |
|
14.3 Clustering with Video and Audio Data |
|
|
347 | (4) |
|
14.3.1 Video Summarization |
|
|
348 | (1) |
|
14.3.2 Video Event Detection |
|
|
349 | (1) |
|
14.3.3 Video Story Clustering |
|
|
350 | (1) |
|
14.3.4 Music Summarization |
|
|
350 | (1) |
|
14.4 Clustering with Multimodal Data |
|
|
351 | (2) |
|
14.5 Summary and Future Directions |
|
|
353 | (4) |
15 Time-Series Data Clustering |
|
357 | (24) |
|
|
|
|
|
|
358 | (1) |
|
15.2 The Diverse Formulations for Time-Series Clustering |
|
|
359 | (1) |
|
15.3 Online Correlation-Based Clustering |
|
|
360 | (3) |
|
15.3.1 Selective Muscles and Related Methods |
|
|
361 | (1) |
|
15.3.2 Sensor Selection Algorithms for Correlation Clustering |
|
|
362 | (1) |
|
15.4 Similarity and Distance Measures |
|
|
363 | (6) |
|
15.4.1 Univariate Distance Measures |
|
|
363 | (3) |
|
|
363 | (1) |
|
15.4.1.2 Dynamic Time Warping Distance |
|
|
364 | (1) |
|
|
365 | (1) |
|
15.4.1.4 Longest Common Subsequence |
|
|
365 | (1) |
|
15.4.2 Multivariate Distance Measures |
|
|
366 | (3) |
|
15.4.2.1 Multidimensional LP Distance |
|
|
366 | (1) |
|
15.4.2.2 Multidimensional DTW |
|
|
367 | (1) |
|
15.4.2.3 Multidimensional LCSS |
|
|
368 | (1) |
|
15.4.2.4 Multidimensional Edit Distance |
|
|
368 | (1) |
|
15.4.2.5 Multidimensional Subsequence Matching |
|
|
368 | (1) |
|
15.5 Shape-Based Time-Series Clustering Techniques |
|
|
369 | (5) |
|
15.5.1 k-Means Clustering |
|
|
370 | (1) |
|
15.5.2 Hierarchical Clustering |
|
|
371 | (1) |
|
15.5.3 Density-Based Clustering |
|
|
372 | (1) |
|
15.5.4 Trajectory Clustering |
|
|
372 | (2) |
|
15.6 Time-Series Clustering Applications |
|
|
374 | (1) |
|
|
375 | (6) |
16 Clustering Biological Data |
|
381 | (34) |
|
|
|
|
|
382 | (1) |
|
16.2 Clustering Microarray Data |
|
|
383 | (11) |
|
16.2.1 Proximity Measures |
|
|
383 | (1) |
|
16.2.2 Categorization of Algorithms |
|
|
384 | (1) |
|
16.2.3 Standard Clustering Algorithms |
|
|
385 | (3) |
|
16.2.3.1 Hierarchical Clustering |
|
|
385 | (1) |
|
16.2.3.2 Probabilistic Clustering |
|
|
386 | (1) |
|
16.2.3.3 Graph-Theoretic Clustering |
|
|
386 | (1) |
|
16.2.3.4 Self-Organizing Maps |
|
|
387 | (1) |
|
16.2.3.5 Other Clustering Methods |
|
|
387 | (1) |
|
|
388 | (3) |
|
16.2.4.1 Types and Structures of Biclusters |
|
|
389 | (1) |
|
16.2.4.2 Biclustering Algorithms |
|
|
390 | (1) |
|
16.2.4.3 Recent Developments |
|
|
391 | (1) |
|
|
391 | (1) |
|
16.2.6 Time-Series Gene Expression Data Clustering |
|
|
392 | (1) |
|
16.2.7 Cluster Validation |
|
|
393 | (1) |
|
16.3 Clustering Biological Networks |
|
|
394 | (3) |
|
16.3.1 Characteristics of PPI Network Data |
|
|
394 | (1) |
|
16.3.2 Network Clustering Algorithms |
|
|
394 | (3) |
|
16.3.2.1 Molecular Complex Detection |
|
|
394 | (1) |
|
16.3.2.2 Markov Clustering |
|
|
395 | (1) |
|
16.3.2.3 Neighborhood Search Methods |
|
|
395 | (1) |
|
16.3.2.4 Clique Percolation Method |
|
|
395 | (1) |
|
16.3.2.5 Ensemble Clustering |
|
|
396 | (1) |
|
16.3.2.6 Other Clustering Methods |
|
|
396 | (1) |
|
16.3.3 Cluster Validation and Challenges |
|
|
397 | (1) |
|
16.4 Biological Sequence Clustering |
|
|
397 | (6) |
|
16.4.1 Sequence Similarity Metrics |
|
|
397 | (2) |
|
16.4.1.1 Alignment-Based Similarity |
|
|
398 | (1) |
|
16.4.1.2 Keyword-Based Similarity |
|
|
398 | (1) |
|
16.4.1.3 Kernel-Based Similarity |
|
|
399 | (1) |
|
16.4.1.4 Model-Based Similarity |
|
|
399 | (1) |
|
16.4.2 Sequence Clustering Algorithms |
|
|
399 | (20) |
|
16.4.2.1 Subsequence-Based Clustering |
|
|
399 | (1) |
|
16.4.2.2 Graph-Based Clustering |
|
|
400 | (2) |
|
16.4.2.3 Probabilistic Models |
|
|
402 | (1) |
|
16.4.2.4 Suffix Tree and Suffix Array-Based Method |
|
|
403 | (1) |
|
|
403 | (2) |
|
16.6 Discussion and Summary |
|
|
405 | (10) |
17 Network Clustering |
|
415 | (42) |
|
|
|
|
416 | (1) |
|
17.2 Background and Nomenclature |
|
|
417 | (1) |
|
|
417 | (1) |
|
17.4 Common Evaluation Criteria |
|
|
418 | (1) |
|
17.5 Partitioning with Geometric Information |
|
|
419 | (2) |
|
17.5.1 Coordinate Bisection |
|
|
419 | (1) |
|
17.5.2 Inertial Bisection |
|
|
419 | (1) |
|
17.5.3 Geometric Partitioning |
|
|
420 | (1) |
|
17.6 Graph Growing and Greedy Algorithms |
|
|
421 | (2) |
|
17.6.1 Kernighan-Lin Algorithm |
|
|
422 | (1) |
|
17.7 Agglomerative and Divisive Clustering |
|
|
423 | (1) |
|
|
424 | (4) |
|
|
425 | (1) |
|
17.8.2 Types of Similarity Graphs |
|
|
425 | (1) |
|
|
426 | (1) |
|
17.8.3.1 Unnormalized Graph Laplacian |
|
|
426 | (1) |
|
17.8.3.2 Normalized Graph Laplacians |
|
|
427 | (1) |
|
17.8.4 Spectral Clustering Algorithms |
|
|
427 | (1) |
|
|
428 | (2) |
|
17.9.1 Regularized MCL (RMCL): Improvement over MCL |
|
|
429 | (1) |
|
17.10 Multilevel Partitioning |
|
|
430 | (2) |
|
17.11 Local Partitioning Algorithms |
|
|
432 | (1) |
|
17.12 Hypergraph Partitioning |
|
|
433 | (2) |
|
17.13 Emerging Methods for Partitioning Special Graphs |
|
|
435 | (8) |
|
|
435 | (1) |
|
|
436 | (1) |
|
17.13.3 Heterogeneous Networks |
|
|
437 | (1) |
|
17.13.4 Directed Networks |
|
|
438 | (1) |
|
17.13.5 Combining Content and Relationship Information |
|
|
439 | (1) |
|
17.13.6 Networks with Overlapping Communities |
|
|
440 | (2) |
|
17.13.7 Probabilistic Methods |
|
|
442 | (1) |
|
|
443 | (14) |
18 A Survey of Uncertain Data Clustering Algorithms |
|
457 | (26) |
|
|
|
457 | (2) |
|
18.2 Mixture Model Clustering of Uncertain Data |
|
|
459 | (1) |
|
18.3 Density-Based Clustering Algorithms |
|
|
460 | (2) |
|
|
460 | (1) |
|
|
461 | (1) |
|
18.4 Partitional Clustering Algorithms |
|
|
462 | (4) |
|
18.4.1 The UK-Means Algorithm |
|
|
462 | (1) |
|
18.4.2 The CK-Means Algorithm |
|
|
463 | (1) |
|
18.4.3 Clustering Uncertain Data with Voronoi Diagrams |
|
|
464 | (1) |
|
18.4.4 Approximation Algorithms for Clustering Uncertain Data |
|
|
464 | (1) |
|
18.4.5 Speeding Up Distance Computations |
|
|
465 | (1) |
|
18.5 Clustering Uncertain Data Streams |
|
|
466 | (6) |
|
18.5.1 The UMicro Algorithm |
|
|
466 | (5) |
|
18.5.2 The LuMicro Algorithm |
|
|
471 | (1) |
|
18.5.3 Enhancements to Stream Clustering |
|
|
471 | (1) |
|
18.6 Clustering Uncertain Data in High Dimensionality |
|
|
472 | (5) |
|
18.6.1 Subspace Clustering of Uncertain Data |
|
|
473 | (1) |
|
18.6.2 UPStream: Projected Clustering of Uncertain Data Streams |
|
|
474 | (3) |
|
18.7 Clustering with the Possible Worlds Model |
|
|
477 | (1) |
|
18.8 Clustering Uncertain Graphs |
|
|
478 | (1) |
|
18.9 Conclusions and Summary |
|
|
478 | (5) |
19 Concepts of Visual and Interactive Clustering |
|
483 | (22) |
|
|
|
483 | (1) |
|
19.2 Direct Visual and Interactive Clustering |
|
|
484 | (7) |
|
|
485 | (3) |
|
19.2.2 Parallel Coordinates |
|
|
488 | (3) |
|
|
491 | (1) |
|
19.3 Visual Interactive Steering of Clustering |
|
|
491 | (4) |
|
19.3.1 Visual Assessment of Convergence of Clustering Algorithm |
|
|
491 | (1) |
|
19.3.2 Interactive Hierarchical Clustering |
|
|
492 | (2) |
|
19.3.3 Visual Clustering with SOMs |
|
|
494 | (1) |
|
|
494 | (1) |
|
19.4 Interactive Comparison and Combination of Clusterings |
|
|
495 | (2) |
|
19.4.1 Space of Clusterings |
|
|
495 | (2) |
|
|
497 | (1) |
|
|
497 | (1) |
|
19.5 Visualization of Clusters for Sense-Making |
|
|
497 | (3) |
|
|
500 | (5) |
20 Semisupervised Clustering |
|
505 | (30) |
|
|
|
|
506 | (1) |
|
20.2 Clustering with Pointwise and Pairwise Semisupervision |
|
|
507 | (6) |
|
20.2.1 Semisupervised Clustering Based on Seeding |
|
|
507 | (1) |
|
20.2.2 Semisupervised Clustering Based on Pairwise Constraints |
|
|
508 | (3) |
|
20.2.3 Active Learning for Semisupervised Clustering |
|
|
511 | (1) |
|
20.2.4 Semisupervised Clustering Based on User Feedback |
|
|
512 | (1) |
|
20.2.5 Semisupervised Clustering Based on Nonnegative Matrix Factorization |
|
|
513 | (1) |
|
20.3 Semisupervised Graph Cuts |
|
|
513 | (4) |
|
20.3.1 Semisupervised Unnormalized Cut |
|
|
515 | (1) |
|
20.3.2 Semisupervised Ratio Cut |
|
|
515 | (1) |
|
20.3.3 Semisupervised Normalized Cut |
|
|
516 | (1) |
|
20.4 A Unified View of Label Propagation |
|
|
517 | (4) |
|
20.4.1 Generalized Label Propagation |
|
|
517 | (1) |
|
|
517 | (1) |
|
20.4.3 Tikhonov Regularization (TIKREG) |
|
|
518 | (1) |
|
20.4.4 Local and Global Consistency |
|
|
518 | (1) |
|
|
519 | (2) |
|
|
519 | (1) |
|
20.4.5.2 Gaussian Random Walks EM (GWEM) |
|
|
519 | (1) |
|
20.4.5.3 Linear Neighborhood Propagation |
|
|
520 | (1) |
|
20.4.6 Label Propagation and Green's Function |
|
|
521 | (1) |
|
20.4.7 Label Propagation and Semisupervised Graph Cuts |
|
|
521 | (1) |
|
20.5 Semisupervised Embedding |
|
|
521 | (3) |
|
20.5.1 Nonlinear Manifold Embedding |
|
|
522 | (1) |
|
20.5.2 Semisupervised Embedding |
|
|
522 | (2) |
|
20.5.2.1 Unconstrained Semisupervised Embedding |
|
|
523 | (1) |
|
20.5.2.2 Constrained Semisupervised Embedding |
|
|
523 | (1) |
|
20.6 Comparative Experimental Analysis |
|
|
524 | (6) |
|
20.6.1 Experimental Results |
|
|
524 | (5) |
|
20.6.2 Semisupervised Embedding Methods |
|
|
529 | (1) |
|
|
530 | (5) |
21 Alternative Clustering Analysis: A Review |
|
535 | (16) |
|
|
|
535 | (2) |
|
21.2 Technical Preliminaries |
|
|
537 | (1) |
|
21.3 Multiple Clustering Analysis Using Alternative Clusterings |
|
|
538 | (7) |
|
21.3.1 Alternative Clustering Algorithms: A Taxonomy |
|
|
538 | (1) |
|
21.3.2 Unguided Generation |
|
|
539 | (2) |
|
|
539 | (1) |
|
|
539 | (1) |
|
21.3.2.3 Eigenvectors of the Laplacian Matrix |
|
|
540 | (1) |
|
21.3.2.4 Decorrelated k-Means and Convolutional EM |
|
|
540 | (1) |
|
|
540 | (1) |
|
21.3.3 Guided Generation with Constraints |
|
|
541 | (2) |
|
|
541 | (1) |
|
21.3.3.2 Constrained Optimization Approach |
|
|
541 | (1) |
|
|
542 | (1) |
|
21.3.4 Orthogonal Transformation Approaches |
|
|
543 | (1) |
|
21.3.4.1 Orthogonal Views |
|
|
543 | (1) |
|
|
543 | (1) |
|
21.3.5 Information Theoretic |
|
|
544 | (14) |
|
21.3.5.1 Conditional Information Bottleneck (CIB) |
|
|
544 | (1) |
|
21.3.5.2 Conditional Ensemble Clustering |
|
|
544 | (1) |
|
|
544 | (1) |
|
|
545 | (1) |
|
21.4 Connections to Multiview Clustering and Subspace Clustering |
|
|
545 | (2) |
|
21.5 Future Research Issues |
|
|
547 | (1) |
|
|
547 | (4) |
22 Cluster Ensembles: Theory and Applications |
|
551 | (20) |
|
|
|
|
551 | (3) |
|
22.2 The Cluster Ensemble Problem |
|
|
554 | (1) |
|
22.3 Measuring Similarity Between Clustering Solutions |
|
|
555 | (3) |
|
22.4 Cluster Ensemble Algorithms |
|
|
558 | (6) |
|
22.4.1 Probabilistic Approaches to Cluster Ensembles |
|
|
558 | (2) |
|
22.4.1.1 A Mixture Model for Cluster Ensembles (MMCE) |
|
|
558 | (1) |
|
22.4.1.2 Bayesian Cluster Ensembles (BCE) |
|
|
558 | (1) |
|
22.4.1.3 Nonparametric Bayesian Cluster Ensembles (NPBCE) |
|
|
559 | (1) |
|
22.4.2 Pairwise Similarity-Based Approaches |
|
|
560 | (2) |
|
22.4.2.1 Methods Based on Ensemble Co-Association Matrix |
|
|
560 | (2) |
|
22.4.2.2 Relating Consensus Clustering to Other Optimization Formulations |
|
|
562 | (1) |
|
22.4.3 Direct Approaches Using Cluster Labels |
|
|
562 | (2) |
|
22.4.3.1 Graph Partitioning |
|
|
562 | (1) |
|
22.4.3.2 Cumulative Voting |
|
|
563 | (1) |
|
22.5 Applications of Consensus Clustering |
|
|
564 | (2) |
|
22.5.1 Gene Expression Data Analysis |
|
|
564 | (1) |
|
22.5.2 Image Segmentation |
|
|
564 | (2) |
|
|
566 | (5) |
23 Clustering Validation Measures |
|
571 | (36) |
|
|
|
|
572 | (1) |
|
23.2 External Clustering Validation Measures |
|
|
573 | (16) |
|
23.2.1 An Overview of External Clustering Validation Measures |
|
|
574 | (1) |
|
23.2.2 Defective Validation Measures |
|
|
575 | (2) |
|
23.2.2.1 K-Means: The Uniform Effect |
|
|
575 | (1) |
|
23.2.2.2 A Necessary Selection Criterion |
|
|
576 | (1) |
|
23.2.2.3 The Cluster Validation Results |
|
|
576 | (1) |
|
23.2.2.4 The Issues with the Defective Measures |
|
|
577 | (1) |
|
23.2.2.5 Improving the Defective Measures |
|
|
577 | (1) |
|
23.2.3 Measure Normalization |
|
|
577 | (7) |
|
23.2.3.1 Normalizing the Measures |
|
|
578 | (3) |
|
23.2.3.2 The DCV Criterion |
|
|
581 | (2) |
|
23.2.3.3 The Effect of Normalization |
|
|
583 | (1) |
|
23.2.4 Measure Properties |
|
|
584 | (5) |
|
23.2.4.1 The Consistency Between Measures |
|
|
584 | (2) |
|
23.2.4.2 Properties of Measures |
|
|
586 | (3) |
|
|
589 | (1) |
|
23.3 Internal Clustering Validation Measures |
|
|
589 | (12) |
|
23.3.1 An Overview of Internal Clustering Validation Measures |
|
|
589 | (3) |
|
23.3.2 Understanding of Internal Clustering Validation Measures |
|
|
592 | (8) |
|
23.3.2.1 The Impact of Monotonicity |
|
|
592 | (1) |
|
23.3.2.2 The Impact of Noise |
|
|
593 | (1) |
|
23.3.2.3 The Impact of Density |
|
|
594 | (1) |
|
23.3.2.4 The Impact of Subclusters |
|
|
595 | (1) |
|
23.3.2.5 The Impact of Skewed Distributions |
|
|
596 | (2) |
|
23.3.2.6 The Impact of Arbitrary Shapes |
|
|
598 | (2) |
|
23.3.3 Properties of Measures |
|
|
600 | (1) |
|
|
601 | (6) |
24 Educational and Software Resources for Data Clustering |
|
607 | (10) |
|
|
|
|
607 | (1) |
|
24.2 Educational Resources |
|
|
608 | (2) |
|
24.2.1 Books on Data Clustering |
|
|
608 | (1) |
|
24.2.2 Popular Survey Papers on Data Clustering |
|
|
608 | (2) |
|
24.3 Software for Data Clustering |
|
|
610 | (2) |
|
24.3.1 Free and Open-Source Software |
|
|
610 | (1) |
|
24.3.1.1 General Clustering Software |
|
|
610 | (1) |
|
24.3.1.2 Specialized Clustering Software |
|
|
610 | (1) |
|
24.3.2 Commercial Packages |
|
|
611 | (1) |
|
24.3.3 Data Benchmarks for Software and Research |
|
|
611 | (1) |
|
|
612 | (5) |
Index |
|
617 | |