Preface |
|
xiii | |
Notation |
|
xv | |
|
|
1 | (24) |
|
|
1 | (1) |
|
1.2 Early research for multivariate non-Gaussian |
|
|
2 | (5) |
|
1.3 Copula representation for a multivariate distribution |
|
|
7 | (2) |
|
1.4 Data examples: scatterplots and semi-correlations |
|
|
9 | (6) |
|
1.5 Likelihood analysis and model comparisons |
|
|
15 | (8) |
|
1.5.1 A brief summary of maximum likelihood |
|
|
16 | (1) |
|
1.5.2 Two-stage estimation for copula models |
|
|
16 | (1) |
|
1.5.3 Likelihood analysis for continuous data: insurance loss |
|
|
17 | (2) |
|
1.5.4 Likelihood analysis for discrete data: ordinal response |
|
|
19 | (4) |
|
1.6 Copula models versus alternative multivariate models |
|
|
23 | (1) |
|
1.7 Terminology for multivariate distributions with U(0,1) margins |
|
|
23 | (1) |
|
1.8 Copula constructions and properties |
|
|
24 | (1) |
|
2 Basics: dependence, tail behavior and asymmetries |
|
|
25 | (60) |
|
2.1 Multivariate cdfs and their conditional distributions |
|
|
26 | (7) |
|
2.1.1 Conditions for multivariate cdfs |
|
|
26 | (2) |
|
2.1.2 Absolutely continuous and singular components |
|
|
28 | (1) |
|
|
29 | (2) |
|
2.1.4 Mixture models and conditional independence models |
|
|
31 | (1) |
|
2.1.5 Power of a cdf or survival function |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (2) |
|
|
36 | (2) |
|
2.5 Probability integral transform |
|
|
38 | (1) |
|
2.6 Multivariate Gaussian/normal |
|
|
38 | (3) |
|
2.7 Elliptical and multivariate t distributions |
|
|
41 | (4) |
|
2.8 Multivariate dependence concepts |
|
|
45 | (2) |
|
2.8.1 Positive quadrant and orthant dependence |
|
|
45 | (1) |
|
2.8.2 Stochastically increasing positive dependence |
|
|
46 | (1) |
|
2.8.3 Right-tail increasing and left-tail decreasing |
|
|
46 | (1) |
|
2.8.4 Associated random variables |
|
|
46 | (1) |
|
2.8.5 Total positivity of order 2 |
|
|
47 | (1) |
|
2.9 Frechet classes and Frechet bounds, given univariate margins |
|
|
47 | (3) |
|
2.10 Frechet classes given higher order margins |
|
|
50 | (1) |
|
2.11 Concordance and other dependence orderings |
|
|
51 | (2) |
|
2.12 Measures of bivariate monotone association |
|
|
53 | (9) |
|
|
55 | (1) |
|
2.12.2 Spearman's rank correlation |
|
|
56 | (1) |
|
|
57 | (1) |
|
2.12.4 Correlation of normal scores |
|
|
58 | (1) |
|
2.12.5 Auxiliary results for dependence measures |
|
|
58 | (1) |
|
2.12.6 Magnitude of asymptotic variance of measures of associations |
|
|
59 | (1) |
|
2.12.7 Measures of association for discrete/ordinal variables |
|
|
60 | (2) |
|
|
62 | (2) |
|
|
64 | (1) |
|
2.15 Measures of bivariate asymmetry |
|
|
65 | (2) |
|
|
67 | (3) |
|
2.16.1 Tail order function and copula density |
|
|
68 | (2) |
|
2.17 Semi-correlations of normal scores for a bivariate copula |
|
|
70 | (3) |
|
2.18 Tail dependence functions |
|
|
73 | (7) |
|
2.19 Strength of dependence in tails and boundary conditional cdfs |
|
|
80 | (1) |
|
2.20 Conditional tail expectation for bivariate distributions |
|
|
80 | (4) |
|
|
84 | (1) |
|
2.22 Summary for analysis of properties of copulas |
|
|
84 | (1) |
|
3 Copula construction methods |
|
|
85 | (74) |
|
3.1 Overview of dependence structures and desirable properties |
|
|
86 | (3) |
|
3.2 Archimedean copulas based on frailty/resilience |
|
|
89 | (4) |
|
3.3 Archimedean copulas based on Williamson transform |
|
|
93 | (2) |
|
3.4 Hierarchical Archimedean and dependence |
|
|
95 | (3) |
|
|
98 | (4) |
|
3.6 Another limit for max-id distributions |
|
|
102 | (4) |
|
3.7 Frechet class given bivariate margins |
|
|
106 | (1) |
|
3.8 Mixtures of conditional distributions |
|
|
106 | (1) |
|
3.9 Vine copulas or pair-copula constructions |
|
|
107 | (21) |
|
3.9.1 Vine sequence of conditional distributions |
|
|
108 | (2) |
|
3.9.2 Vines as graphical models |
|
|
110 | (2) |
|
3.9.3 Vine distribution: conditional distributions and joint density |
|
|
112 | (2) |
|
|
114 | (1) |
|
3.9.5 Vines with some or all discrete marginal distributions |
|
|
115 | (2) |
|
|
117 | (1) |
|
3.9.7 Multivariate distributions for which the simplifying assumption holds |
|
|
118 | (8) |
|
3.9.8 Vine equivalence classes |
|
|
126 | (1) |
|
3.9.9 Historical background of vines |
|
|
127 | (1) |
|
3.10 Factor copula models |
|
|
128 | (8) |
|
3.10.1 Continuous response |
|
|
128 | (4) |
|
3.10.2 Discrete ordinal response |
|
|
132 | (3) |
|
3.10.3 Mixed continuous and ordinal response |
|
|
135 | (1) |
|
3.10.4 T-Copula with factor correlation matrix structure |
|
|
135 | (1) |
|
3.11 Combining models for different groups of variables |
|
|
136 | (4) |
|
3.11.1 Bi-factor copula model |
|
|
137 | (1) |
|
3.11.2 Nested dependent latent variables |
|
|
137 | (1) |
|
3.11.3 Dependent clusters with conditional independence |
|
|
138 | (2) |
|
3.12 Nonlinear structural equation models |
|
|
140 | (3) |
|
3.13 Truncated vines, factor models and graphical models |
|
|
143 | (1) |
|
3.14 Copulas for stationary time series models |
|
|
144 | (4) |
|
3.15 Multivariate extreme value distributions |
|
|
148 | (2) |
|
3.16 Multivariate extreme value distributions with factor structure |
|
|
150 | (1) |
|
3.17 Other multivariate models |
|
|
151 | (4) |
|
3.17.1 Analogy of Archimedean and elliptical |
|
|
152 | (1) |
|
3.17.2 Other constructions |
|
|
153 | (2) |
|
3.18 Operations to get additional copulas |
|
|
155 | (3) |
|
3.19 Summary for construction methods |
|
|
158 | (1) |
|
4 Parametric copula families and properties |
|
|
159 | (64) |
|
4.1 Summary of parametric copula families |
|
|
160 | (2) |
|
4.2 Properties of classes of bivariate copulas |
|
|
162 | (1) |
|
|
163 | (1) |
|
4.3.1 Bivariate Gaussian copula |
|
|
163 | (1) |
|
4.3.2 Multivariate Gaussian copula |
|
|
164 | (1) |
|
|
164 | (1) |
|
4.5 Copulas based on the logarithmic series LT |
|
|
165 | (3) |
|
|
165 | (1) |
|
4.5.2 Multivariate Frank extensions |
|
|
166 | (2) |
|
4.6 Copulas based on the gamma LT |
|
|
168 | (2) |
|
4.6.1 Bivariate Mardia-Takahasi-Clayton-Cook-Johnson |
|
|
168 | (1) |
|
4.6.2 Multivariate MTCJ extensions |
|
|
168 | (2) |
|
4.7 Copulas based on the Sibuya LT |
|
|
170 | (1) |
|
|
170 | (1) |
|
4.7.2 Multivariate extensions with Sibuya LT |
|
|
171 | (1) |
|
4.8 Copulas based on the positive stable LT |
|
|
171 | (3) |
|
|
171 | (1) |
|
4.8.2 Multivariate Gumbel extensions |
|
|
172 | (2) |
|
4.9 Galambos extreme value |
|
|
174 | (1) |
|
4.9.1 Bivariate Galambos copula |
|
|
174 | (1) |
|
4.9.2 Multivariate Galambos extensions |
|
|
175 | (1) |
|
4.10 Husler-Reiss extreme value |
|
|
175 | (2) |
|
4.10.1 Bivariate Husler-Reiss |
|
|
176 | (1) |
|
4.10.2 Multivariate Husler-Reiss |
|
|
176 | (1) |
|
4.11 Archimedean with LT that is integral of positive stable |
|
|
177 | (3) |
|
4.11.1 Bivariate copula in Joe and Ma, 2000 |
|
|
177 | (3) |
|
4.11.2 Multivariate extension |
|
|
180 | (1) |
|
4.12 Archimedean based on LT of inverse gamma |
|
|
180 | (1) |
|
|
181 | (1) |
|
4.14 Marshall-Olkin multivariate exponential |
|
|
182 | (3) |
|
4.14.1 Bivariate Marshall-Olkin |
|
|
182 | (2) |
|
4.14.2 Multivariate Marshall-Olkin exponential and extensions |
|
|
184 | (1) |
|
4.15 Asymmetric Gumbel/Galambos copulas |
|
|
185 | (4) |
|
4.15.1 Asymmetric Gumbel with Marshall-Olkin at boundary |
|
|
185 | (1) |
|
4.15.2 Asymmetric Gumbel based on deHaan representation |
|
|
186 | (3) |
|
4.16 Extreme value limit of multivariate tv |
|
|
189 | (1) |
|
|
189 | (1) |
|
4.17 Copulas based on the gamma stopped positive stable LT |
|
|
190 | (3) |
|
4.17.1 Bivariate BB1: Joe and Hu, 1996 |
|
|
190 | (2) |
|
4.17.2 BB1: range of pairs of dependence measures |
|
|
192 | (1) |
|
4.17.3 Multivariate extensions of BB1 |
|
|
193 | (1) |
|
4.18 Copulas based on the gamma stopped gamma LT |
|
|
193 | (2) |
|
4.18.1 Bivariate BB2: Joe and Hu, 1996 |
|
|
193 | (2) |
|
4.19 Copulas based on the positive stable stopped gamma LT |
|
|
195 | (1) |
|
4.19.1 Bivariate BB3: Joe and Hu, 1996 |
|
|
195 | (1) |
|
4.20 Gamma power mixture of Galambos |
|
|
196 | (3) |
|
4.20.1 Bivariate BB4: Joe and Hu, 1996 |
|
|
197 | (1) |
|
4.20.2 Multivariate extensions of BB4 |
|
|
198 | (1) |
|
4.21 Positive stable power mixture of Galambos |
|
|
199 | (1) |
|
4.21.1 Bivariate BB5: Joe and Hu, 1996 |
|
|
199 | (1) |
|
4.22 Copulas based on the Sibuya stopped positive stable LT |
|
|
200 | (1) |
|
4.22.1 Bivariate BB6: Joe and Hu, 1996 |
|
|
200 | (1) |
|
4.23 Copulas based on the Sibuya stopped gamma LT |
|
|
201 | (2) |
|
4.23.1 Bivariate BB7: Joe and Hu, 1996 |
|
|
202 | (1) |
|
4.24 Copulas based on the generalized Sibuya LT |
|
|
203 | (2) |
|
4.24.1 Bivariate BB8; Joe 1993 |
|
|
204 | (1) |
|
4.25 Copulas based on the tilted positive stable LT |
|
|
205 | (1) |
|
4.25.1 Bivariate BB9 or Crowder |
|
|
205 | (1) |
|
4.26 Copulas based on the shifted negative binomial LT |
|
|
206 | (2) |
|
|
206 | (2) |
|
4.27 Multivariate GB2 distribution and copula |
|
|
208 | (2) |
|
4.28 Factor models based on convolution-closed families |
|
|
210 | (2) |
|
|
212 | (2) |
|
|
213 | (1) |
|
4.29.2 Multivariate extensions of FGM |
|
|
213 | (1) |
|
4.30 Frechet's convex combination |
|
|
214 | (1) |
|
4.31 Additional parametric copula families |
|
|
214 | (6) |
|
4.31.1 Archimedean copula: LT is integral of Mittag-Leffler LT |
|
|
215 | (1) |
|
4.31.2 Archimedean copula based on positive stable stopped Sibuya LT |
|
|
216 | (1) |
|
4.31.3 Archimedean copula based on gamma stopped Sibuya LT |
|
|
216 | (1) |
|
4.31.4 3-parameter families with a power parameter |
|
|
217 | (3) |
|
4.32 Dependence comparisons |
|
|
220 | (2) |
|
4.33 Summary for parametric copula families |
|
|
222 | (1) |
|
5 Inference, diagnostics and model selection |
|
|
223 | (36) |
|
5.1 Parametric inference for copulas |
|
|
223 | (2) |
|
|
225 | (1) |
|
5.3 Log-likelihood for copula models |
|
|
226 | (1) |
|
5.4 Maximum likelihood: asymptotic theory |
|
|
227 | (1) |
|
5.5 Inference functions and estimating equations |
|
|
228 | (4) |
|
5.5.1 Resampling methods for interval estimates |
|
|
231 | (1) |
|
|
232 | (2) |
|
5.7 Kullback-Leibler divergence |
|
|
234 | (9) |
|
5.7.1 Sample size to distinguish two densities |
|
|
235 | (1) |
|
5.7.2 Jeffreys' divergence and KL sample size |
|
|
236 | (4) |
|
5.7.3 Kullback-Leibler divergence and maximum likelihood |
|
|
240 | (2) |
|
5.7.4 Discretized multivariate Gaussian |
|
|
242 | (1) |
|
5.8 Initial data analysis for copula models |
|
|
243 | (3) |
|
|
244 | (1) |
|
5.8.2 Dependence structure |
|
|
245 | (1) |
|
|
246 | (1) |
|
5.9 Copula pseudo likelihood, sensitivity analysis |
|
|
246 | (1) |
|
5.10 Non-parametric inference |
|
|
247 | (4) |
|
|
247 | (1) |
|
5.10.2 Estimation of functionals of a copula |
|
|
248 | (2) |
|
5.10.3 Non-parametric estimation of low-dimensional copula |
|
|
250 | (1) |
|
5.11 Diagnostics for conditional dependence |
|
|
251 | (3) |
|
5.12 Diagnostics for adequacy of fit |
|
|
254 | (3) |
|
5.12.1 Continuous variables |
|
|
255 | (1) |
|
5.12.2 Multivariate discrete and ordinal categorical |
|
|
256 | (1) |
|
5.13 Vuong's procedure for parametric model comparisons |
|
|
257 | (1) |
|
5.14 Summary for inference |
|
|
258 | (1) |
|
6 Computing and algorithms |
|
|
259 | (50) |
|
6.1 Roots of nonlinear equations |
|
|
260 | (1) |
|
6.2 Numerical optimization and maximum likelihood |
|
|
261 | (1) |
|
6.3 Numerical integration and quadrature |
|
|
262 | (2) |
|
|
264 | (1) |
|
6.5 Numerical methods involving matrices |
|
|
265 | (1) |
|
6.6 Graphs and spanning trees |
|
|
266 | (1) |
|
6.7 Computation of τ, ρs and ρN for copulas |
|
|
267 | (2) |
|
6.8 Computation of empirical Kendall's τ |
|
|
269 | (1) |
|
6.9 Simulation from multivariate distributions and copulas |
|
|
270 | (4) |
|
6.9.1 Conditional method or Rosenblatt transform |
|
|
270 | (1) |
|
6.9.2 Simulation with reflected uniform random variables |
|
|
271 | (1) |
|
6.9.3 Simulation from product of cdfs |
|
|
272 | (1) |
|
6.9.4 Simulation from Archimedean copulas |
|
|
272 | (1) |
|
6.9.5 Simulation from mixture of max-id |
|
|
273 | (1) |
|
6.9.6 Simulation from multivariate extreme value copulas |
|
|
274 | (1) |
|
6.10 Likelihood for vine copula |
|
|
274 | (5) |
|
6.11 Likelihood for factor copula |
|
|
279 | (2) |
|
6.12 Copula derivatives for factor and vine copulas |
|
|
281 | (6) |
|
|
287 | (3) |
|
6.14 Simulation from vines and truncated vine models |
|
|
290 | (7) |
|
6.14.1 Simulation from vine copulas |
|
|
291 | (2) |
|
6.14.2 Simulation from truncated vines and factor copulas |
|
|
293 | (4) |
|
6.15 Partial correlations and vines |
|
|
297 | (5) |
|
6.16 Partial correlations and factor structure |
|
|
302 | (1) |
|
6.17 Searching for good truncated R-vine approximations |
|
|
303 | (5) |
|
6.17.1 Greedy sequential approach using minimum spanning trees |
|
|
305 | (2) |
|
6.17.2 Non-greedy algorithm |
|
|
307 | (1) |
|
6.18 Summary for algorithms |
|
|
308 | (1) |
|
7 Applications and data examples |
|
|
309 | (54) |
|
7.1 Data analysis with misspecified copula models |
|
|
309 | (6) |
|
7.1.1 Inference for dependence measures |
|
|
310 | (3) |
|
7.1.2 Inference for tail-weighted dependence measures |
|
|
313 | (2) |
|
7.2 Inferences on tail quantities |
|
|
315 | (2) |
|
7.3 Discretized multivariate Gaussian and R-vine approximation |
|
|
317 | (2) |
|
7.4 Insurance losses: bivariate continuous |
|
|
319 | (3) |
|
7.5 Longitudinal count: multivariate discrete |
|
|
322 | (5) |
|
|
327 | (4) |
|
7.7 Multivariate extreme values |
|
|
331 | (4) |
|
7.8 Multivariate financial returns |
|
|
335 | (15) |
|
|
335 | (2) |
|
|
337 | (5) |
|
7.8.3 Stock returns over several sectors |
|
|
342 | (8) |
|
7.9 Conservative tail inference |
|
|
350 | (3) |
|
7.10 Item response: multivariate ordinal |
|
|
353 | (2) |
|
7.11 SEM model as vine: alienation data |
|
|
355 | (4) |
|
7.12 SEM model as vine: attitude-behavior data |
|
|
359 | (2) |
|
7.13 Overview of applications |
|
|
361 | (2) |
|
8 Theorems for properties of copulas |
|
|
363 | (66) |
|
8.1 Absolutely continuous and singular components of multivariate distributions |
|
|
363 | (2) |
|
8.2 Continuity properties of copulas |
|
|
365 | (1) |
|
|
366 | (3) |
|
8.4 Frechet classes and compatibility |
|
|
369 | (5) |
|
|
374 | (8) |
|
8.6 Multivariate extreme value distributions |
|
|
382 | (4) |
|
8.7 Mixtures of max-id distributions |
|
|
386 | (5) |
|
8.8 Elliptical distributions |
|
|
391 | (3) |
|
|
394 | (4) |
|
|
398 | (2) |
|
8.11 Combinatorics of vines |
|
|
400 | (3) |
|
8.12 Vines and mixtures of conditional distributions |
|
|
403 | (7) |
|
|
410 | (9) |
|
|
419 | (3) |
|
|
422 | (4) |
|
|
426 | (1) |
|
8.17 Summary for further reseach |
|
|
427 | (2) |
|
A Laplace transforms and Archimedean generators |
|
|
429 | (8) |
|
A.1 Parametric Laplace transform families |
|
|
429 | (6) |
|
A.1.1 One-parameter LT families |
|
|
429 | (2) |
|
A.1.2 Two-parameter LT families: group 1 |
|
|
431 | (2) |
|
A.1.3 Two-parameter LT families: group 2 |
|
|
433 | (1) |
|
A.1.4 LT families via integration |
|
|
434 | (1) |
|
A.2 Archimedean generators in Nelsen's book |
|
|
435 | (2) |
Bibliography |
|
437 | (22) |
Index |
|
459 | |