Muutke küpsiste eelistusi

E-raamat: Deploying IPv6 in 3GPP Networks - Evolving Mobile Broadband from 2G to LTE and Beyond: Evolving Mobile Broadband from 2G to LTE and Beyond [Wiley Online]

(formerly Nokia Siemens Networks, now Renesas Mobile, Finland), (Renesas Mobile, Finland), (Nokia Research Center, Finland)
  • Formaat: 418 pages
  • Sari: NSN/Nokia Series
  • Ilmumisaeg: 10-May-2013
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1118398335
  • ISBN-13: 9781118398333
Teised raamatud teemal:
  • Wiley Online
  • Hind: 119,47 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 418 pages
  • Sari: NSN/Nokia Series
  • Ilmumisaeg: 10-May-2013
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1118398335
  • ISBN-13: 9781118398333
Teised raamatud teemal:
Deploying IPv6 in 3GPP Networks Evolving Mobile Broadband from 2G to LTE and Beyond 

A practical guide enabling mobile operators to deploy IPv6 with confidence

The most widely used cellular mobile broadband network technology is based on the 3GPP standards. The history and background of the 3GPP technology is in the Global Mobile Service (GSM) technology and the work done in European Telecommunications Standards Institute (ETSI). This primary voice service network has evolved to be the dominant mobile Internet access technology.

Deploying IPv6 in 3GPP Networks covers how Internet Protocol version 6 (IPv6) is currently defined in the industry standards for cellular mobile broadband, why and how this route was taken in the technology, and what is the current reality of the deployment. Furthermore, it offers the authors views on how some possible IPv6 related advances 3GPP networks may be improved during the coming years. It gives guidance how to implement and deploy IPv6 correctly in the Third Generation Partnership Project (3GPP) mobile broadband environment, and what issues one may face when doing so. The book covers 3GPP technologies from 2G to LTE, and offers some ideas for the future.         

Key features





written by highly respected and experienced authors from the IPv6 / mobile world Provides an explanation of the technical background for some not-so-obvious design choices, what to concentrate on, and what transition strategies should be used by the vendors and the operators Offers a useful reference guide for operators and vendors entering into IPv6 business
Foreword xvii
Preface xix
Acknowledgments xxi
Acronyms xxiii
Glossary xxxiii
1 Introduction
1(26)
1.1 Introduction to Internet and the Internet Protocol
2(1)
1.2 Internet Principles
2(2)
1.3 The Internet Protocol
4(5)
1.3.1 Networks of Networks
6(1)
1.3.2 Routing and Forwarding
7(2)
1.4 Internet Protocol Addresses
9(3)
1.4.1 IPv4 Addresses
9(2)
1.4.2 IPv6 Addresses
11(1)
1.5 Transport Protocols
12(2)
1.5.1 User Datagram Protocol
13(1)
1.5.2 Transmission Control Protocol
13(1)
1.5.3 Port Numbers and Services
14(1)
1.6 Domain Name Service
14(3)
1.6.1 DNS Structure
14(1)
1.6.2 DNS Operation
15(1)
1.6.3 Top Level Domain
16(1)
1.6.4 Internationalized Domain Names
17(1)
1.7 IPv4 Address Exhaustion
17(4)
1.7.1 IP Address Allocation
18(1)
1.7.2 History of IPv4 Address Exhaustion
19(2)
1.8 IPv6 History Thus Far
21(2)
1.8.1 IPv6 Technology Maturity
21(1)
1.8.2 IPv6 Network Deployments
22(1)
1.9 Ongoing Cellular Deployments
23(1)
1.10
Chapter Summary
24(1)
1.11 Suggested Reading
24(3)
References
24(3)
2 Basics of the 3GPP Technologies
27(52)
2.1 Standardization and Specifications
27(7)
2.1.1 3GPP Standardization Process
28(3)
2.1.2 IETF Standardization Process
31(2)
2.1.3 Other Important Organizations in the 3GPP-Ecosystem
33(1)
2.2 Introduction to 3GPP Network Architecture and Protocols
34(11)
2.2.1 GSM System
34(2)
2.2.2 General Packet Radio Service
36(5)
2.2.3 Evolved Packet System
41(3)
2.2.4 Control and User Planes, and Transport and User Layer Separation
44(1)
2.3 3GPP Protocols
45(13)
2.3.1 Control-Plane Protocols
46(7)
2.3.2 User-Plane Protocols
53(2)
2.3.3 GPRS Tunneling Protocol Versions
55(1)
2.3.4 PMIP Based EPS Architecture
56(2)
2.4 Mobility and Roaming
58(3)
2.4.1 Mobility Management
59(1)
2.4.2 Roaming
60(1)
2.4.3 Mobility Management Beyond 3GPP
60(1)
2.5 Central Concepts for IP Connectivity
61(7)
2.5.1 PDP Contexts and EPS Bearers
61(2)
2.5.2 Access Point Name
63(1)
2.5.3 Traffic Flow Template
64(1)
2.5.4 3GPP Link Model Principles
65(2)
2.5.5 Multiple Packet Data Network Connections
67(1)
2.6 User Equipment
68(2)
2.6.1 Traditional 3GPP UE Model
69(1)
2.6.2 Split-UE
69(1)
2.7 Subscription Management Databases and Other Backend Systems
70(2)
2.7.1 Home Location Register and Authentication Center
70(1)
2.7.2 Home Subscriber Server
71(1)
2.7.3 Equipment Identity Register
71(1)
2.7.4 Other Backend Systems
71(1)
2.8 End-to-end View from the User Equipment to the Internet
72(3)
2.8.1 GPRS
72(1)
2.8.2 EPS
73(2)
2.9
Chapter Summary
75(1)
2.10 Suggested Reading
75(4)
References
76(3)
3 Introduction to IPv6
79(84)
3.1 IPv6 Addressing Architecture
80(7)
3.1.1 IPv6 Address Format
80(1)
3.1.2 IPv6 Address Types
81(1)
3.1.3 IPv6 Address Scopes
81(1)
3.1.4 IPv6 Addressing Zones
82(1)
3.1.5 IPv6 Addresses on Network Interfaces
82(1)
3.1.6 Interface Identifier and the Modified EUI-64
83(1)
3.1.7 IPv6 Address Space Allocations
84(1)
3.1.8 Special IPv6 Address Formats
84(2)
3.1.9 Textual Presentations of IPv6 Addresses
86(1)
3.2 IPv6 Packet Header Structure and Extensibility
87(10)
3.2.1 Traffic Class and Flow Label
88(2)
3.2.2 IPv6 Extension Headers
90(2)
3.2.3 MTU and Fragmentation
92(2)
3.2.4 Multicast
94(3)
3.3 Internet Control Message Protocol Version 6
97(4)
3.3.1 Error Messages
98(2)
3.3.2 Informational Messages
100(1)
3.4 Neighbor Discovery Protocol
101(8)
3.4.1 Router Discovery
101(1)
3.4.2 Parameter Discovery
102(2)
3.4.3 On-link Determination
104(1)
3.4.4 Link-layer Address Resolution
104(1)
3.4.5 Neighbor Unreachability Detection
105(1)
3.4.6 Next-hop Determination
106(1)
3.4.7 Duplicate Address Detection
106(1)
3.4.8 Redirect
107(1)
3.4.9 Secure Neighbor Discovery
107(1)
3.4.10 Neighbor Discovery Proxies
108(1)
3.5 Address Configuration and Selection Approaches
109(13)
3.5.1 Stateless Address Autoconfiguration
110(2)
3.5.2 Dynamic Host Configuration Protocol Version 6
112(5)
3.5.3 IKEv2
117(1)
3.5.4 Address Selection
118(2)
3.5.5 Privacy and Cryptographically Generated Addresses
120(1)
3.5.6 Router Selection
121(1)
3.6 IPv6 Link Types and Models
122(4)
3.6.1 IPv6 over Point-to-point Links
123(1)
3.6.2 IPv6 over Shared Media
124(1)
3.6.3 Link Numbering
125(1)
3.6.4 Bridging of Link Types
126(1)
3.7 Mobile IP
126(4)
3.7.1 Detecting Network Attachment
126(1)
3.7.2 Host-based Mobile IP
127(1)
3.7.3 Network-based Mobile IP
128(2)
3.8 IP Security
130(3)
3.8.1 Security Protocols
131(1)
3.8.2 Security Associations
131(1)
3.8.3 Key Management
132(1)
3.8.4 Cryptographic Algorithms
132(1)
3.8.5 MOBIKE
132(1)
3.9 Application Programming Interfaces
133(3)
3.9.1 Socket APIs
133(1)
3.9.2 Address Family Agnostic APIs
133(1)
3.9.3 IP Address Literals and Unique Resource Identifiers
134(1)
3.9.4 Happy Eyeballs
134(2)
3.10 Implications of IPv6 for Other Protocols
136(8)
3.10.1 Transport Layer Protocols
136(1)
3.10.2 Domain Name System
137(4)
3.10.3 Applications
141(1)
3.10.4 Internet Routing
141(2)
3.10.5 Management Information Base
143(1)
3.11 Validation and Certification
144(1)
3.11.1 Test Suites
144(1)
3.11.2 IPv6 Ready Logo
144(1)
3.12 Example IPv6 Packet Flows
145(10)
3.12.1 IPv6 on Ethernet
146(7)
3.12.2 IPv6 with DNS and TCP
153(2)
3.13
Chapter Summary
155(8)
References
156(7)
4 IPv6 in 3GPP Networks
163(85)
4.1 PDN Connectivity Service
163(9)
4.1.1 Bearer Concept
164(2)
4.1.2 PDP and PDN Types
166(2)
4.1.3 Link Models in 3GPP
168(4)
4.2 End User IPv6 Service Impact on the 3GPP System
172(17)
4.2.1 User, Control and Transport Planes
172(1)
4.2.2 Affected Networking Elements
173(7)
4.2.3 Charging and Billing
180(2)
4.2.4 External PDN Access and the (S)Gi Interface
182(5)
4.2.5 Roaming Challenges
187(2)
4.3 End User IPv6 Service Impact on GTP and PMIPv6 Protocols
189(6)
4.3.1 GTP Control Plane Version 1
189(2)
4.3.2 GTP Control Plane Version 2
191(3)
4.3.3 GTP User Plane
194(1)
4.3.4 PMIPv6
194(1)
4.4 IP Address Assignment, Configuration, and Management
195(19)
4.4.1 Addressing Assumptions
195(2)
4.4.2 Stateless IPv6 Address Autoconfiguration
197(3)
4.4.3 Stateful IPv6 Address Configuration
200(1)
4.4.4 Deferred Address Allocation
200(1)
4.4.5 Static IPv6 Addressing
201(3)
4.4.6 IPv6 Prefix Delegation
204(3)
4.4.7 NAS Protocol Signaling and PCO Options
207(4)
4.4.8 Initial E-UTRAN Attach Example with IPv4 and IPv6 Address Configuration
211(3)
4.5 Bearer Establishment and Fallback Scenarios
214(5)
4.5.1 Initial Connection Establishment
214(1)
4.5.2 Backward Compatibility with Earlier Releases
215(1)
4.5.3 Dual Address Bearer Flag
215(1)
4.5.4 Requested PDN Type Handling in a PGW
216(1)
4.5.5 Fallback Scenarios and Rules
217(1)
4.5.6 Inter-RAT Handovers and Inter-SGSN Routing Area Updates
218(1)
4.6 Signaling Interfaces
219(1)
4.6.1 IPv6 as Transport
219(1)
4.6.2 IPv6 in Information Element Level
219(1)
4.7 User Equipment Specific Considerations
220(7)
4.7.1 IPv6 and Impacted Layers
220(2)
4.7.2 Required RFCs for Host UEs
222(1)
4.7.3 DNS Issues
223(1)
4.7.4 Provisioning
224(1)
4.7.5 IPv6 Tethering
225(2)
4.7.6 IPv6 Application Support
227(1)
4.8 Multicast
227(1)
4.9 Known IPv6 Issues and Anomalies
228(5)
4.9.1 IPv6 Neighbor Discovery Considerations
229(4)
4.9.2 PDN Connection Model and Multiple IPv6 Prefixes
233(1)
4.10 IPv6 Specific Security Considerations
233(6)
4.10.1 IPv6 Addressing Threats
234(2)
4.10.2 IPv6 First-hop Security
236(1)
4.10.3 IPv6 Extension Header Exploits
237(2)
4.11
Chapter Summary
239(9)
References
240(8)
5 IPv6 Transition Mechanisms for 3GPP Networks
248(48)
5.1 Motivation for Transition Mechanisms
248(3)
5.1.1 Phasing the Transition
250(1)
5.2 Technology Overview
251(4)
5.2.1 Translation
251(2)
5.2.2 Encapsulation
253(1)
5.2.3 Mesh or Hub-and-spoke
254(1)
5.2.4 Scalability Concerns
255(1)
5.3 Transition Toolbox
255(22)
5.3.1 Transition Solutions Not Included
256(1)
5.3.2 Dual-stack
257(1)
5.3.3 NAT64 and DNS64
258(11)
5.3.4 464XLAT
269(2)
5.3.5 Bump-In-the-Host
271(1)
5.3.6 Mapping Address and Port Number
272(3)
5.3.7 Other Tunneling or Translation Based Transition Mechanisms
275(2)
5.4 Transition Scenarios for 3GPP
277(5)
5.4.1 Transition Scenario Evolution
278(2)
5.4.2 Dual-stack
280(1)
5.4.3 IPv6-only
281(1)
5.4.4 Double Translation
281(1)
5.5 Transition Impacts on 3GPP Architecture
282(7)
5.5.7 Transition Impact on the Supporting Infrastructure
282(1)
5.5.2 IP Network Support Systems
283(2)
5.5.3 Tools to Divide Subscribers Per IP Capability
285(1)
5.5.4 Translation Implications
286(1)
5.5.5 Transition Support in the Transport Plane
287(1)
5.5.6 Roaming
287(1)
5.5.7 Impact of Delayed Transition to IPv6
288(1)
5.6 Transitioning to IPv6
289(3)
5.6.1 Application Developer's Transition Plan
290(1)
5.6.2 Phone Vendor's Transition Plan
290(1)
5.6.3 Network Operator's Transition Checklist
290(2)
5.7
Chapter Summary
292(4)
References
293(3)
6 Future of IPv6 in 3GPP Networks
296(41)
6.1 IPv6-based Traffic Offloading Solutions
296(8)
6.1.1 Motivations in Cellular Networks
297(2)
6.1.2 Benefits of IPv6-based Offloading Approaches
299(1)
6.1.3 IP-friendly Offloading Solutions
299(4)
6.1.4 Concluding Remarks
303(1)
6.2 Evolving 3GPP Bearers to Multiple Prefixes and Next-hop Routers
304(9)
6.2.1 Background and Motivation
304(1)
6.2.2 Multi-prefix Bearer Solution Proposal
305(6)
6.2.3 Overall Impact Analysis
311(2)
6.2.4 Open Issues and Future Work
313(1)
6.3 LTE as the Uplink Access for Home Networks
313(3)
6.3.1 Homenet at IETF
313(1)
6.3.2 Homenet and 3GPP Architecture
314(1)
6.3.3 Additional 3GPP Deployment Options
315(1)
6.4 Port Control Protocol
316(5)
6.4.1 Deployment Scenarios
317(1)
6.4.2 Protocol Features
318(1)
6.4.3 PCP Server Discovery
319(1)
6.4.4 Protocol Messages
319(1)
6.4.5 Cascaded NATs
320(1)
6.4.6 Relation to IPv6 Transition
320(1)
6.5 Internet of Things
321(10)
6.5.1 Typical Use Cases
321(1)
6.5.2 Standardization Organizations Working with IoT
322(5)
6.5.3 IoT Domain from the 3GPP Point of View
327(1)
6.5.4 Implications to UEs
328(1)
6.5.5 Implications to 3GPP Networks
329(2)
6.6
Chapter Summary
331(6)
References
332(5)
Index 337
Jouni Korhonen, formerly Nokia Siemens Networks, now Renesas Mobile, Finland Teemu Savolainen, Nokia Research Center, Finland Jonne Soininen, Renesas Mobile, Finland