Muutke küpsiste eelistusi

E-raamat: Desalination - Water from Water, Second Edition: Water from Water 2nd Edition [Wiley Online]

  • Formaat: 768 pages
  • Ilmumisaeg: 25-Jun-2019
  • Kirjastus: Wiley-Scrivener
  • ISBN-10: 1119407877
  • ISBN-13: 9781119407874
  • Wiley Online
  • Hind: 271,67 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 768 pages
  • Ilmumisaeg: 25-Jun-2019
  • Kirjastus: Wiley-Scrivener
  • ISBN-10: 1119407877
  • ISBN-13: 9781119407874
This all-new revised edition of a modern classic is the most comprehensive and up-to-date coverage of the "green" process of desalination in industrial and municipal applications, covering all of the processes and equipment necessary to design, operate, and troubleshoot desalination systems. This is becoming increasingly more important for not only our world's industries, but our world's populations, as pure water becomes more and more scarce.

"Blue is the new green." This is an all-new revised edition of a modern classic on one of the most important subjects in engineering: Water. Featuring a total revision of the initial volume, this is the most comprehensive and up-to-date coverage of the process of desalination in industrial and municipal applications, a technology that is becoming increasingly more important as more and more companies choose to "go green." This book covers all of the processes and equipment necessary to design, operate, and troubleshoot desalination systems, from the fundamental principles of desalination technology and membranes to the much more advanced engineering principles necessary for designing a desalination system. Earlier chapters cover the basic principles, the economics of desalination, basic terms and definitions, and essential equipment.

The book then goes into the thermal processes involved in desalination, such as various methods of evaporation, distillation, recompression, and multistage flash. Following that is an exhaustive discussion of the membrane processes involved in desalination, such as reverse osmosis, forward osmosis, and electrodialysis. Finally, the book concludes with a chapter on the future of these technologies and their place in industry and how they can be of use to society.

This book is a must-have for anyone working in water, for engineers, technicians, scientists working in research and development, and operators. It is also useful as a textbook for graduate classes studying industrial water applications.
Preface xxi
1 Introduction to Desalination 1(50)
Jane Kucera
1.1 Introduction
1(1)
1.2 How Much Water is There?
2(5)
1.2.1 Global Water Availability
2(2)
1.2.2 Water Demand
4(2)
1.2.3 Additional Water Stress Due to Climate Change
6(1)
1.3 Finding More Fresh Water
7(8)
1.3.1 Relocating Water
7(2)
1.3.2 Conservation and Reuse
9(2)
1.3.3 Develop New Sources of Fresh Water
11(4)
1.4 Desalination: Water from Water
15(26)
1.4.1 Drivers for Desalination
15(1)
1.4.2 Feed Water Sources for Desalination
16(4)
1.4.3 Current Users of Desalinated Water
20(1)
1.4.4 Overview of Desalination Technologies
21(3)
1.4.5 History of Desalination Technologies
24(10)
1.4.5.1 History of Thermal Desalination
24(2)
1.4.5.2 History of Reverse Osmosis Desalination
26(1)
1.4.5.3 Developments in Desalination Since 1980
27(7)
1.4.6 The Future of Desalination
34(7)
1.5 Desalination: Water from Water Outline
41(2)
Abbreviations
43(1)
References
44(7)
2 Thermal Desalination Processes 51(88)
2.1 Introduction
51(1)
2.2 Mass- and Energy Balances
52(59)
2.2.1 Single-Stage Evaporation
52(9)
2.2.2 Multiple-Effect Evaporation
61(19)
2.2.3 Multi-Stage-Flash Evaporation
80(12)
2.2.4 Multiple-Effect Distillation with Thermal Vapour Compression (MED-TVC)
92(12)
2.2.5 Single-Stage Evaporation with Mechanically Driven Vapour Compression
104(7)
2.3 Performance of Thermal Desalination Processes
111(20)
2.3.1 Definition of Gained Output Ratio
111(3)
2.3.2 Single Purpose vs. Dual Purpose Plants
114(12)
2.3.3 Specific Primary Energy Consumption
126(5)
2.4 Recent Developments in Thermal Desalination Processes
131(3)
2.4.1 Hybrid Plants
131(1)
2.4.1.1 Multi-Stage Flash with Reverse Osmosis (MSF-RO)
131(1)
2.4.1.2 Multi-Effect Distillation with Reverse Osmosis (MED-RO)
132(1)
2.4.2 Expanding the Scope of Hybrid Thermal Desalination
132(2)
2.5 Future Prospects
134(3)
2.5.1 General Remarks
134(1)
2.5.2 Optimization of Existing Process Design
134(29)
2.5.2.1 Material of Construction
134(1)
2.5.2.2 Increasing Water Velocity
135(1)
2.5.2.3 Heat Transfer Enhancement by Using Corrugated Oval Tubes
136(1)
2.5.2.4 Increasing the Top Operation Temperature to 85°C
136(1)
2.5.2.5 Increasing Number of Stages
136(1)
2.5.2.6 Modifications in MED-TVC
136(1)
References
137(2)
3 Basic Terms and Definitions 139(24)
3.1 Reverse Osmosis System Flow Rating
139(1)
3.2 Recovery
140(2)
3.3 Rejection
142(3)
3.4 Flux
145(2)
3.5 Concentration Polarization
147(1)
3.6 Beta
148(1)
3.7 Fouling
149(3)
3.8 Scaling
152(2)
3.9 Silt Density Index
154(3)
3.10 Modified Fouling Index
157(3)
3.11 Langelier Saturation Index
160(1)
References
161(2)
4 Nanofiltration - Theory and Application 163(46)
Christopher Bellona
4.1 Introduction
163(1)
4.2 Defining Nanofiltration
164(4)
4.3 History of Nanofiltration
168(2)
4.4 Theory
170(12)
4.4.1 Mechanisms of Solute Removal
171(6)
4.4.1.1 Ion Rejection
171(2)
4.4.1.2 Organic Solute Rejection
173(4)
4.4.2 Modeling NF Separations
177(3)
4.4.2.1 Donnan Steric Pore Model
177(1)
4.4.2.2 Irreversible Thermodynamic or Phenomenological Model
178(1)
4.4.2.3 Other Modeling Approaches
179(1)
4.4.3 Membrane Fouling
180(2)
4.5 Application
182(11)
4.5.1 Water and Wastewater Treatment Industry
182(7)
4.5.1.1 Water Treatment
182(1)
4.5.1.2 Wastewater Treatment and Reuse
183(4)
4.5.1.3 Desalination
187(2)
4.5.2 Food Industry
189(2)
4.5.2.1 Dairy Industry
189(2)
4.5.2.2 Sugar and Beverage Industry
191(1)
4.5.3 Chemical Processing Industry
191(19)
4.5.3.1 Pharmaceutical Industry
192(1)
4.5.3.2 Textile Industry
192(1)
4.6 Conclusions
193(1)
References
194(15)
5 Forward Osmosis 209(36)
Jeffrey McCutcheon
Lingling Xia
Nhu-Ngoc Bui
5.1 The Limitations of Conventional Desalination
210(2)
5.1.1 Osmotic Pressure
210(2)
5.2 Forward Osmosis
212(3)
5.2.1 History of FO
212(2)
5.2.2 Benefits of Forward Osmosis
214(1)
5.3 The Draw Solution
215(3)
5.3.1 Inorganic Solutes
216(1)
5.3.2 Nanomaterials
217(1)
5.3.3 Organic Solutes
217(1)
5.4 The Membrane
218(8)
5.4.1 Mass Transfer Limitations in Forward Osmosis
219(2)
5.4.2 Tailored Membranes for FO
221(28)
5.4.2.1 Flat Sheet
222(2)
5.4.2.2 Hollow Fiber
224(2)
5.5 Process Design and Desalination Applications
226(6)
5.6 Future Directions
232(2)
Acknowledgements
234(1)
References
234(11)
6 Electrodialysis Desalination 245(42)
Jae-Hwan Choi
Hong-Joo Lee
Seung-Hyeon Moon
6.1 Principles of ED
246(3)
6.2 Preparation and Characterization of Ion Exchange Membranes
249(12)
6.2.1 Preparation of Ion Exchange Membranes
249(2)
6.2.2 Characterization of Ion Exchange Membranes
251(2)
6.2.3 Concentration Polarization and the Limiting Current Density
253(8)
6.3 ED Equipment Design and Desalination Process
261(9)
6.3.1 ED Stack Design
261(1)
6.3.2 ED Process Design
262(2)
6.3.3 ED Operation and Maintenance
264(1)
6.3.4 Design Parameters in Desalting ED
265(2)
6.3.5 Economics of the ED Process
267(3)
6.4 Control of Fouling in an ED Desalination Process
270(5)
6.4.1 Fouling Mechanism
270(1)
6.4.2 Fouling Potential
271(2)
6.4.3 Fouling Mitigation
273(2)
6.5 Prospects for ED Desalination
275(6)
6.5.1 Integration with ED for the Desalination
275(1)
6.5.2 Process Intensification of the ED Desalination System
276(2)
6.5.3 ED Powered by Photovoltaic Solar Energy
278(2)
6.5.4 Perspectives of ED Desalination
280(1)
6.6 Concluding Remarks
281(1)
References
282(5)
7 Continuous Electrodeionization 287(42)
Jonathan H. Wood
Joseph D. Gifford
7.1 Introduction
287(2)
7.2 Development History
289(1)
7.3 Technology Overview
289(2)
7.3.1 Mechanisms of Ion Removal
291(1)
7.4 CEDI Module Construction
291(8)
7.4.1 Device Configurations
291(2)
7.4.2 Resin Configurations
293(5)
7.4.2.1 Mixed Bed Resin Filler (CEDI-MB) - Intermembrane Spacing
293(1)
7.4.2.2 Mixed Bed Resin Filler (CEDI-MB) - Resin Packing
294(1)
7.4.2.3 Layered Bed Resin Filler (CEDI-LB)
294(2)
7.4.2.4 Separate Bed Resin Filler (CEDI-SB)
296(2)
7.4.3 Flow Spacers
298(1)
7.5 Electroactive Media Used in CEDI Devices
299(1)
7.5.1 Ion Exchange Resin Selection
299(1)
7.5.2 Ion Exchange Membrane Selection
299(1)
7.6 DC Current and Voltage
300(4)
7.6.1 Faraday's Law
300(1)
7.6.2 Current Efficiency and E-Factor
301(1)
7.6.3 Ohm's Law and Module Resistance
302(1)
7.6.4 Electrode Reactions and Material Selection
303(1)
7.7 System Design Considerations
304(2)
7.7.1 Required Process Control & Instrumentation
304(1)
7.7.2 Optional Process Control & Instrumentation
305(1)
7.8 Process Design Considerations
306(10)
7.8.1 Feed Water Requirements
307(1)
7.8.2 Hardness
308(1)
7.8.3 Carbon Dioxide
309(1)
7.8.4 Oxidants
310(1)
7.8.5 Temperature
311(1)
7.8.6 Water Recovery
312(1)
7.8.7 Recycling of CEDI Reject Stream
313(1)
7.8.8 Total Organic Carbon
313(1)
7.8.9 Electrode Gases
314(2)
7.9 Operation and Maintenance
316(6)
7.9.1 Estimation of Operating Current and Voltage
316(1)
7.9.2 Power Supply Operation
316(1)
7.9.3 Power Consumption
317(1)
7.9.4 Flows and Pressures
317(2)
7.9.5 Record Keeping
319(1)
7.9.6 Cleaning and Sanitization
319(3)
7.9.7 Preventive Maintenance
322(1)
7.10 Applications
322(2)
7.10.1 Pharmaceutical and Biotechnology
322(1)
7.10.2 Steam Generation
323(1)
7.10.3 Microelectronics/Semiconductor
323(1)
7.10.4 System Sizing
324(1)
7.11 Future Trends
324(1)
Nomenclature
325(1)
References
326(3)
8 Membrane Distillation: Now and Future 329(58)
Xing Yang
Anthony G. Fane
Rong Wang
8.1 Introduction
329(2)
8.2 MD Concepts and Historic Development
331(5)
8.2.1 MD Concepts and Configurations
331(3)
8.2.2 Historic Development
334(2)
8.3 MD Transport Mechanisms
336(7)
8.3.1 Mass Transfer in MD
337(4)
8.3.1.1 Mass Transfer Through the Feed Boundary Layer (CP Effect)
337(1)
8.3.1.2 Mass Transfer Through Membrane Pores
338(3)
8.3.2 Heat Transfer in MD
341(2)
8.3.2.1 Heat Transfer on the Feed Side (TP Effect)
342(1)
8.3.2.2 Heat Transfer Across the Membrane-Conduction and Evaporation
342(1)
8.4 Strategic Development for an Enhanced MD System
343(15)
8.4.1 MD Membranes
343(8)
8.4.2 MD Module Design
351(5)
8.4.3 MD Process Parameters
356(2)
8.5 Energy and Cost Evaluation in MD
358(6)
8.5.1 Thermal Efficiency and Cost Evaluation
359(3)
8.5.2 Current Status of MD Cost and Energy Resources
362(2)
8.6 Innovations on MD Application Development
364(3)
8.7 Concluding Remarks and Future Prospects
367(3)
References
370(17)
9 Humidification Dehumidification Desalination 387(46)
John H. Lienhard V
9.1 Introduction
387(9)
9.1.1 Classification of HDH cycles
390(1)
9.1.2 System-Level Performance Parameters
391(3)
9.1.3 Improving the Energy Efficiency of HDH Systems
394(1)
9.1.4 Components of the HDH System
395(1)
9.2 Thermal Design
396(20)
9.2.1 Effectiveness Model (On-Design Model)
398(10)
9.2.1.1 Water Heated HDH Cycle
399(7)
9.2.1.2 Single and Multi-Stage Air Heated Cycle
406(1)
9.2.1.3 Varied Pressure Cycles and Other Carrier Gases
407(1)
9.2.1.4 Summary of On-Design Findings
408(1)
9.2.2 Single-Stage Fixed-Area HDH (Off-Design model)
408(8)
9.2.2.1 Optimal Performance of a Single-Stage System
409(1)
9.2.2.2 Relationship of HCRd = 1 to Entropy Generation Minimization
410(3)
9.2.2.3 Variation of GOR with Top Temperature
413(3)
9.2.2.4 Summary of Off-Design Findings
416(1)
9.3 Systems with Mass Extraction and Injection
416(10)
9.3.1 System Balancing Algorithms (On-Design Model)
419(2)
9.3.2 Balancing Fixed-Area Systems by Extraction/Injection (Off Design Analysis)
421(1)
9.3.3 Experimental Realization of HDH with and without Extraction/Injection
422(3)
9.3.4 Summary of HDH Characteristics Related to Extraction/Injection
425(1)
9.4 Bubble Column Dehumidification
426(7)
9.4.1 Modeling and Experimental Validation
428(1)
9.4.2 Multistage Bubble Column Dehumidifiers
428(3)
9.4.3 Coil-Free Bubble Columns
431(2)
9.5 Effect of High Salinity Feed on HDH Performance
433(4)
Acknowledgments
437(1)
Nomenclature
437(2)
References
439
10 Freezing-Melting Desalination Processes 433(46)
Mohammad Shafiur Rahman
Mohamed Al-Khusaibi
10.1 Introduction
447(1)
10.2 Background or History of Freezing-Melting Process
448(2)
10.3 Principles of Freezing-Melting Process
450(1)
10.4 Major Types of Freezing-Melting Process
451(1)
10.5 Direct-Contact Freezing
451(8)
10.5.1 Ice Nucleation
451(6)
10.5.1.1 Ice-Crystallization Unit
452(4)
10.5.1.2 Hydrate Formation
456(1)
10.5.2 Ice Separation Unit
457(1)
10.5.3 Wash Columns
457(3)
10.5.3.1 Melting Unit
459(1)
10.6 Gas Hydrate Process
459(1)
10.7 Direct-Contact Eutectic Freezing
459(1)
10.8 Indirect-Contact FM Process
460(4)
10.8.1 Internally Cooled
460(4)
10.8.1.1 Progressive Static Layer Growth System as Block of Ice
460(1)
10.8.1.2 Progressive Dynamic Layer Growth (Falling Film Type)
461(1)
10.8.1.3 Progressive Dynamic Layer Growth (Circular Tube Type)
462(1)
10.8.1.4 Melting of Progressive Layer or Block Crystals
462(1)
10.8.1.5 Progressive Layer Crystallization on Rotating Drum
463(1)
10.8.1.6 Progressive Suspension Growth
463(1)
10.8.2 Externally Cooled
464(1)
10.9 Pressure and Vacuum Processes
464(2)
10.9.1 Vacuum System
464(1)
10.9.2 Vapor-Compression System
465(1)
10.9.3 Vapor-Absorption
465(1)
10.9.4 Multiple-Phase Transformation
465(1)
10.9.5 Pressure-Shift Nucleation and FM Process
466(1)
10.10 Applications
466(3)
10.11 Future Challenges
469(1)
Acknowledgment
470(1)
Abbreviations
471(1)
References
471(8)
11 Ion Exchange in Desalination 479(18)
Bill Bornak
11.1 Introduction
480(1)
11.2 Early Ion Exchange Desalination Processes
480(2)
11.3 Life After RO
482(1)
11.4 Ion Exchange Softening as Pre-Treatment
483(2)
11.5 Softening by Ion Exchange
485(1)
11.6 Boron-Selective Ion Exchange Resins as Post-Treatment
486(5)
11.7 New Vessel Designs
491(2)
11.8 New Resin Bead Design
493(1)
11.9 Conclusion
494(1)
References
495(2)
12 Electrosorption of Heavy Metals with Capacitive Deionization: Water Reuse, Desalination and Resources Recovery 497(28)
Pei Xu
Brian Elson
Jorg E. Drewes
12.1 Introduction
498(4)
12.1.1 Removal of Heavy Metals from Aqueous Solutions
498(2)
12.1.2 Capacitive Deionization
500(2)
12.2 Experimental Methods
502(4)
12.2.1 CDI Treatment System
502(2)
12.2.2 Feed Water Quality and Sample Analysis
504(2)
12.3 Results and Discussions
506(12)
12.3.1 CDI Voltage and Current Profiles
506(1)
12.3.2 Removal of Heavy Metals from Electrolytes
507(7)
12.3.3 Removal of Cyanide
514(4)
12.4 Conclusions
518
References
516(9)
13 Solar Desalination 525(42)
Eydhah Almatrafi
D. Yogi Goswami
Mohammad Abutayeh
Chennan Li
Elias K. Stefanakos
13.1 Introduction
526(2)
13.2 Solar Desalination
528(2)
13.2.1 Conventional Desalination
528(1)
13.2.2 Renewable Energy Driven Desalination
528(1)
13.2.3 Solar Energy-Driven Desalination
529(1)
13.3 Direct Solar Desalination
530(3)
13.3.1 Solar Still
530(2)
13.3.2 Solar-Driven Humidification- Dehumidification (HDH)
532(1)
13.4 Indirect Solar Desalination
533(17)
13.4.1 Phase Change Processes
533(9)
13.4.1.1 Solar-Assisted Multi-Stage Flash
534(2)
13.4.1.2 Solar-Assisted Multiple- Effect Distillation
536(5)
13.4.1.3 Solar-Assisted Heat Pumps (HP)
541(1)
13.4.2 Membrane Processes
542(8)
13.4.2.1 Solar-Driven Reverse Osmosis
542(3)
13.4.2.2 Solar-Driven Electro-Dialysis
545(3)
13.4.2.3 Solar Thermal Driven Membrane Distillation (MD)
548(2)
13.5 Non-Conventional Solar Desalination
550(3)
13.5.1 Solar-Assisted Passive Vacuum
550(3)
13.5.2 Power-Water Cogeneration
553(1)
13.6 Solar Integration and Environmental Considerations
553(6)
13.6.1 System Integration
553(1)
13.6.2 Solar System Considerations
554(2)
13.6.3 Solar Collectors
556(1)
13.6.4 Solar Pond
556(1)
13.6.5 Photovoltaics
557(1)
13.6.6 Environmental Impact
558(1)
Nomenclature
559(1)
References
560(7)
14 Wind Energy Powered Desalination Systems 567(80)
Jaime Gonzalez
Pedro Cabrera
Jose A. Carta
14.1 Introduction
568(2)
14.2 Basic Wind Technology Concepts
570(20)
14.2.1 Brief Classification of Wind Energy Exploitation Systems
570(4)
14.2.2 Horizontal-Axis Wind Turbine Components
574(16)
14.2.2.1 Energy Acquisition Subsystem
575(4)
14.2.2.2 Mechanical Power Transmission Subsystem
579(4)
14.2.2.3 Yaw Subsystem
583(1)
14.2.2.4 Electrical Subsystem
584(5)
14.2.2.5 Control Subsystem
589(1)
14.2.2.6 Support Subsystem
589(1)
14.3 Particular Characteristics of Wind Energy
590(8)
14.3.1 Wind Resource Estimation
591(7)
14.4 Classification of Wind-Driven Desalination Systems
598(10)
14.4.1 On-Grid Wind Energy Systems for Desalination
600(8)
14.4.1.1 Wind Turbines that Dump all the Generated Energy into the Grid
602(4)
14.4.1.2 Micro-Grids Interconnected with a Conventional Grid
606(2)
14.5 Off-Grid Wind Energy Systems for Desalination
608(22)
14.5.1 Small-Scale Systems
608(12)
14.5.1.1 Electrical Interface in the Coupling between Wind Energy and Desalination Unit
609(8)
14.5.1.2 Mechanical and Hydrostatic Interfaces in the Coupling between Wind Energy and Desalination Unit
617(3)
14.5.2 Medium- and Large-Scale Systems
620(31)
14.5.2.1 Electrical Interface in the Coupling between Wind Energy System and Desalination Unit
621(7)
14.5.2.2 Mechanical and Hydrostatic Interfaces in the Coupling between Wind Energy System and Desalination Unit
628(2)
14.6 Wind-Diesel Systems for Desalination
630(4)
14.7 Conclusions and Future Trends
634(4)
List of Symbols
638(1)
References
639(8)
15 Geothermal Desalination 647(36)
Veera Gnaneswar Gude
15.1 Introduction
648(1)
15.2 Renewable Energy Powered Desalination
649(1)
15.3 Geothermal Energy Utilization Around the World
649(2)
15.4 The Rationale - Why Geothermal Desalination?
651(5)
15.4.1 Capacity Factor
652(1)
15.4.2 Comparable Costs
653(1)
15.4.3 Efficient Resource Utilization
654(1)
15.4.4 Integrated Uses for Geothermal Energy Sources
655(1)
15.5 Global Geothermal Desalination Potential
656(5)
15.5.1 Geothermal Water Composition
657(2)
15.5.2 Geothermal Water for Thermal Desalination
659(1)
15.5.3 Geothermal Water for Membrane Desalination
660(1)
15.6 Geothermal Desalination - State of the Art
661(6)
15.6.1 Thermal Desalination Processes
661(2)
15.6.2 Membrane Desalination Processes
663(4)
15.7 Desalination Process Selection
667(3)
15.7.1 Plant Size
667(1)
15.7.2 Geothermal Energy Quality and Quantity and other Renewable Energy Sources
668(1)
15.7.3 Desalination Technology
668(1)
15.7.4 Feed Water
668(1)
15.7.5 Product Water
669(1)
15.7.6 Brine Disposal
669(1)
15.7.7 Techno-Economic Requirements
669(1)
15.8 Challenges and Considerations for Geothermal Desalination Implementation
670(4)
15.8.1 Land Use
671(2)
15.8.2 Geological Hazards
673(1)
15.8.3 Waste Heat Releases
673(1)
15.8.4 Atmospheric Emissions
673(1)
15.8.5 Water Footprint
674(1)
15.8.6 Noise and Social Impacts
674(1)
15.9 Techno-Economics of Geothermal Desalination
674(2)
15.10 Summary
676(2)
References
678(5)
16 Future Expectations 683(38)
16.1 Introduction
683(1)
16.2 Historical Trends in Fresh Water Supply Development
684(3)
16.3 Emerging Trends and Directions in Alternative Water Supply Development
687(13)
16.3.1 Desalination of Impaired Waters
692(4)
16.3.1.1 El Paso's Kay Bailey Hutchison Desalting Plant
693(3)
16.3.2 Impaired Water Usage in Energy Production
696(3)
16.3.2.1 Palo Verde Nuclear Power Plant, Arizona
698(1)
16.3.3 Salinization
699(1)
16.4 Desalination for Oil and Gas
700(12)
16.4.1 Treatment of Produced Water from Conventional Reservoirs
701(1)
16.4.2 Designer Waterflooding for Enhanced Oil Recovery
702(3)
16.4.2.1 Conventional Reservoirs
702(2)
16.4.2.2 Unconventionals
704(1)
16.4.3 Treat to Need
705(1)
16.4.4 Treatment of Hydrofracking Flowback
706(4)
16.4.5 Water Treatment and the Oil Sands
710(2)
16.5 The Future of Desalination Technologies
712(4)
16.5.1 Biomimetic and Nanotech Membranes
715(1)
16.5.2 Desalination with Renewables
716(1)
16.6 Summary
716(1)
References
717(4)
List of Contributors 721(16)
Index 737
Jane Kucera is a chemical engineer with 25 years' experience in the area of membrane technology. Jane began her work with membranes in the Seawater Laboratory at UCLA where she received her Master of Chemical Engineering degree in 1984. She worked for 7 years with Bend Research, where she worked on water re-use systems for the International Space Station. Ms. Kucera's subsequent career path is a "who's who" of the world's most respected companies working in water treatment, including GE and Siemens. She joined the Nalco Company in 2003, where she is a senior engineer with a variety of responsibilities. She published Reverse Osmosis through Wilely-Scrivener in 2010, a book that has become the template for that technology, worldwide. She also has approximately 40 publications to her credit, including journal articles, and presentations. Wiley-Scrivener imprint.