Preface |
|
xxi | |
1 Introduction to Desalination |
|
1 | (50) |
|
|
|
1 | (1) |
|
1.2 How Much Water is There? |
|
|
2 | (5) |
|
1.2.1 Global Water Availability |
|
|
2 | (2) |
|
|
4 | (2) |
|
1.2.3 Additional Water Stress Due to Climate Change |
|
|
6 | (1) |
|
1.3 Finding More Fresh Water |
|
|
7 | (8) |
|
|
7 | (2) |
|
1.3.2 Conservation and Reuse |
|
|
9 | (2) |
|
1.3.3 Develop New Sources of Fresh Water |
|
|
11 | (4) |
|
1.4 Desalination: Water from Water |
|
|
15 | (26) |
|
1.4.1 Drivers for Desalination |
|
|
15 | (1) |
|
1.4.2 Feed Water Sources for Desalination |
|
|
16 | (4) |
|
1.4.3 Current Users of Desalinated Water |
|
|
20 | (1) |
|
1.4.4 Overview of Desalination Technologies |
|
|
21 | (3) |
|
1.4.5 History of Desalination Technologies |
|
|
24 | (10) |
|
1.4.5.1 History of Thermal Desalination |
|
|
24 | (2) |
|
1.4.5.2 History of Reverse Osmosis Desalination |
|
|
26 | (1) |
|
1.4.5.3 Developments in Desalination Since 1980 |
|
|
27 | (7) |
|
1.4.6 The Future of Desalination |
|
|
34 | (7) |
|
1.5 Desalination: Water from Water Outline |
|
|
41 | (2) |
|
|
43 | (1) |
|
|
44 | (7) |
2 Thermal Desalination Processes |
|
51 | (88) |
|
|
51 | (1) |
|
2.2 Mass- and Energy Balances |
|
|
52 | (59) |
|
2.2.1 Single-Stage Evaporation |
|
|
52 | (9) |
|
2.2.2 Multiple-Effect Evaporation |
|
|
61 | (19) |
|
2.2.3 Multi-Stage-Flash Evaporation |
|
|
80 | (12) |
|
2.2.4 Multiple-Effect Distillation with Thermal Vapour Compression (MED-TVC) |
|
|
92 | (12) |
|
2.2.5 Single-Stage Evaporation with Mechanically Driven Vapour Compression |
|
|
104 | (7) |
|
2.3 Performance of Thermal Desalination Processes |
|
|
111 | (20) |
|
2.3.1 Definition of Gained Output Ratio |
|
|
111 | (3) |
|
2.3.2 Single Purpose vs. Dual Purpose Plants |
|
|
114 | (12) |
|
2.3.3 Specific Primary Energy Consumption |
|
|
126 | (5) |
|
2.4 Recent Developments in Thermal Desalination Processes |
|
|
131 | (3) |
|
|
131 | (1) |
|
2.4.1.1 Multi-Stage Flash with Reverse Osmosis (MSF-RO) |
|
|
131 | (1) |
|
2.4.1.2 Multi-Effect Distillation with Reverse Osmosis (MED-RO) |
|
|
132 | (1) |
|
2.4.2 Expanding the Scope of Hybrid Thermal Desalination |
|
|
132 | (2) |
|
|
134 | (3) |
|
|
134 | (1) |
|
2.5.2 Optimization of Existing Process Design |
|
|
134 | (29) |
|
2.5.2.1 Material of Construction |
|
|
134 | (1) |
|
2.5.2.2 Increasing Water Velocity |
|
|
135 | (1) |
|
2.5.2.3 Heat Transfer Enhancement by Using Corrugated Oval Tubes |
|
|
136 | (1) |
|
2.5.2.4 Increasing the Top Operation Temperature to 85°C |
|
|
136 | (1) |
|
2.5.2.5 Increasing Number of Stages |
|
|
136 | (1) |
|
2.5.2.6 Modifications in MED-TVC |
|
|
136 | (1) |
|
|
137 | (2) |
3 Basic Terms and Definitions |
|
139 | (24) |
|
3.1 Reverse Osmosis System Flow Rating |
|
|
139 | (1) |
|
|
140 | (2) |
|
|
142 | (3) |
|
|
145 | (2) |
|
3.5 Concentration Polarization |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
149 | (3) |
|
|
152 | (2) |
|
|
154 | (3) |
|
3.10 Modified Fouling Index |
|
|
157 | (3) |
|
3.11 Langelier Saturation Index |
|
|
160 | (1) |
|
|
161 | (2) |
4 Nanofiltration - Theory and Application |
|
163 | (46) |
|
|
|
163 | (1) |
|
4.2 Defining Nanofiltration |
|
|
164 | (4) |
|
4.3 History of Nanofiltration |
|
|
168 | (2) |
|
|
170 | (12) |
|
4.4.1 Mechanisms of Solute Removal |
|
|
171 | (6) |
|
|
171 | (2) |
|
4.4.1.2 Organic Solute Rejection |
|
|
173 | (4) |
|
4.4.2 Modeling NF Separations |
|
|
177 | (3) |
|
4.4.2.1 Donnan Steric Pore Model |
|
|
177 | (1) |
|
4.4.2.2 Irreversible Thermodynamic or Phenomenological Model |
|
|
178 | (1) |
|
4.4.2.3 Other Modeling Approaches |
|
|
179 | (1) |
|
|
180 | (2) |
|
|
182 | (11) |
|
4.5.1 Water and Wastewater Treatment Industry |
|
|
182 | (7) |
|
|
182 | (1) |
|
4.5.1.2 Wastewater Treatment and Reuse |
|
|
183 | (4) |
|
|
187 | (2) |
|
|
189 | (2) |
|
|
189 | (2) |
|
4.5.2.2 Sugar and Beverage Industry |
|
|
191 | (1) |
|
4.5.3 Chemical Processing Industry |
|
|
191 | (19) |
|
4.5.3.1 Pharmaceutical Industry |
|
|
192 | (1) |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
194 | (15) |
5 Forward Osmosis |
|
209 | (36) |
|
|
|
|
5.1 The Limitations of Conventional Desalination |
|
|
210 | (2) |
|
|
210 | (2) |
|
|
212 | (3) |
|
|
212 | (2) |
|
5.2.2 Benefits of Forward Osmosis |
|
|
214 | (1) |
|
|
215 | (3) |
|
|
216 | (1) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
218 | (8) |
|
5.4.1 Mass Transfer Limitations in Forward Osmosis |
|
|
219 | (2) |
|
5.4.2 Tailored Membranes for FO |
|
|
221 | (28) |
|
|
222 | (2) |
|
|
224 | (2) |
|
5.5 Process Design and Desalination Applications |
|
|
226 | (6) |
|
|
232 | (2) |
|
|
234 | (1) |
|
|
234 | (11) |
6 Electrodialysis Desalination |
|
245 | (42) |
|
|
|
|
|
246 | (3) |
|
6.2 Preparation and Characterization of Ion Exchange Membranes |
|
|
249 | (12) |
|
6.2.1 Preparation of Ion Exchange Membranes |
|
|
249 | (2) |
|
6.2.2 Characterization of Ion Exchange Membranes |
|
|
251 | (2) |
|
6.2.3 Concentration Polarization and the Limiting Current Density |
|
|
253 | (8) |
|
6.3 ED Equipment Design and Desalination Process |
|
|
261 | (9) |
|
|
261 | (1) |
|
|
262 | (2) |
|
6.3.3 ED Operation and Maintenance |
|
|
264 | (1) |
|
6.3.4 Design Parameters in Desalting ED |
|
|
265 | (2) |
|
6.3.5 Economics of the ED Process |
|
|
267 | (3) |
|
6.4 Control of Fouling in an ED Desalination Process |
|
|
270 | (5) |
|
|
270 | (1) |
|
|
271 | (2) |
|
|
273 | (2) |
|
6.5 Prospects for ED Desalination |
|
|
275 | (6) |
|
6.5.1 Integration with ED for the Desalination |
|
|
275 | (1) |
|
6.5.2 Process Intensification of the ED Desalination System |
|
|
276 | (2) |
|
6.5.3 ED Powered by Photovoltaic Solar Energy |
|
|
278 | (2) |
|
6.5.4 Perspectives of ED Desalination |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
282 | (5) |
7 Continuous Electrodeionization |
|
287 | (42) |
|
|
|
|
287 | (2) |
|
|
289 | (1) |
|
|
289 | (2) |
|
7.3.1 Mechanisms of Ion Removal |
|
|
291 | (1) |
|
7.4 CEDI Module Construction |
|
|
291 | (8) |
|
7.4.1 Device Configurations |
|
|
291 | (2) |
|
7.4.2 Resin Configurations |
|
|
293 | (5) |
|
7.4.2.1 Mixed Bed Resin Filler (CEDI-MB) - Intermembrane Spacing |
|
|
293 | (1) |
|
7.4.2.2 Mixed Bed Resin Filler (CEDI-MB) - Resin Packing |
|
|
294 | (1) |
|
7.4.2.3 Layered Bed Resin Filler (CEDI-LB) |
|
|
294 | (2) |
|
7.4.2.4 Separate Bed Resin Filler (CEDI-SB) |
|
|
296 | (2) |
|
|
298 | (1) |
|
7.5 Electroactive Media Used in CEDI Devices |
|
|
299 | (1) |
|
7.5.1 Ion Exchange Resin Selection |
|
|
299 | (1) |
|
7.5.2 Ion Exchange Membrane Selection |
|
|
299 | (1) |
|
7.6 DC Current and Voltage |
|
|
300 | (4) |
|
|
300 | (1) |
|
7.6.2 Current Efficiency and E-Factor |
|
|
301 | (1) |
|
7.6.3 Ohm's Law and Module Resistance |
|
|
302 | (1) |
|
7.6.4 Electrode Reactions and Material Selection |
|
|
303 | (1) |
|
7.7 System Design Considerations |
|
|
304 | (2) |
|
7.7.1 Required Process Control & Instrumentation |
|
|
304 | (1) |
|
7.7.2 Optional Process Control & Instrumentation |
|
|
305 | (1) |
|
7.8 Process Design Considerations |
|
|
306 | (10) |
|
7.8.1 Feed Water Requirements |
|
|
307 | (1) |
|
|
308 | (1) |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
311 | (1) |
|
|
312 | (1) |
|
7.8.7 Recycling of CEDI Reject Stream |
|
|
313 | (1) |
|
7.8.8 Total Organic Carbon |
|
|
313 | (1) |
|
|
314 | (2) |
|
7.9 Operation and Maintenance |
|
|
316 | (6) |
|
7.9.1 Estimation of Operating Current and Voltage |
|
|
316 | (1) |
|
7.9.2 Power Supply Operation |
|
|
316 | (1) |
|
|
317 | (1) |
|
7.9.4 Flows and Pressures |
|
|
317 | (2) |
|
|
319 | (1) |
|
7.9.6 Cleaning and Sanitization |
|
|
319 | (3) |
|
7.9.7 Preventive Maintenance |
|
|
322 | (1) |
|
|
322 | (2) |
|
7.10.1 Pharmaceutical and Biotechnology |
|
|
322 | (1) |
|
|
323 | (1) |
|
7.10.3 Microelectronics/Semiconductor |
|
|
323 | (1) |
|
|
324 | (1) |
|
|
324 | (1) |
|
|
325 | (1) |
|
|
326 | (3) |
8 Membrane Distillation: Now and Future |
|
329 | (58) |
|
|
|
|
|
329 | (2) |
|
8.2 MD Concepts and Historic Development |
|
|
331 | (5) |
|
8.2.1 MD Concepts and Configurations |
|
|
331 | (3) |
|
8.2.2 Historic Development |
|
|
334 | (2) |
|
8.3 MD Transport Mechanisms |
|
|
336 | (7) |
|
8.3.1 Mass Transfer in MD |
|
|
337 | (4) |
|
8.3.1.1 Mass Transfer Through the Feed Boundary Layer (CP Effect) |
|
|
337 | (1) |
|
8.3.1.2 Mass Transfer Through Membrane Pores |
|
|
338 | (3) |
|
8.3.2 Heat Transfer in MD |
|
|
341 | (2) |
|
8.3.2.1 Heat Transfer on the Feed Side (TP Effect) |
|
|
342 | (1) |
|
8.3.2.2 Heat Transfer Across the Membrane-Conduction and Evaporation |
|
|
342 | (1) |
|
8.4 Strategic Development for an Enhanced MD System |
|
|
343 | (15) |
|
|
343 | (8) |
|
|
351 | (5) |
|
8.4.3 MD Process Parameters |
|
|
356 | (2) |
|
8.5 Energy and Cost Evaluation in MD |
|
|
358 | (6) |
|
8.5.1 Thermal Efficiency and Cost Evaluation |
|
|
359 | (3) |
|
8.5.2 Current Status of MD Cost and Energy Resources |
|
|
362 | (2) |
|
8.6 Innovations on MD Application Development |
|
|
364 | (3) |
|
8.7 Concluding Remarks and Future Prospects |
|
|
367 | (3) |
|
|
370 | (17) |
9 Humidification Dehumidification Desalination |
|
387 | (46) |
|
|
|
387 | (9) |
|
9.1.1 Classification of HDH cycles |
|
|
390 | (1) |
|
9.1.2 System-Level Performance Parameters |
|
|
391 | (3) |
|
9.1.3 Improving the Energy Efficiency of HDH Systems |
|
|
394 | (1) |
|
9.1.4 Components of the HDH System |
|
|
395 | (1) |
|
|
396 | (20) |
|
9.2.1 Effectiveness Model (On-Design Model) |
|
|
398 | (10) |
|
9.2.1.1 Water Heated HDH Cycle |
|
|
399 | (7) |
|
9.2.1.2 Single and Multi-Stage Air Heated Cycle |
|
|
406 | (1) |
|
9.2.1.3 Varied Pressure Cycles and Other Carrier Gases |
|
|
407 | (1) |
|
9.2.1.4 Summary of On-Design Findings |
|
|
408 | (1) |
|
9.2.2 Single-Stage Fixed-Area HDH (Off-Design model) |
|
|
408 | (8) |
|
9.2.2.1 Optimal Performance of a Single-Stage System |
|
|
409 | (1) |
|
9.2.2.2 Relationship of HCRd = 1 to Entropy Generation Minimization |
|
|
410 | (3) |
|
9.2.2.3 Variation of GOR with Top Temperature |
|
|
413 | (3) |
|
9.2.2.4 Summary of Off-Design Findings |
|
|
416 | (1) |
|
9.3 Systems with Mass Extraction and Injection |
|
|
416 | (10) |
|
9.3.1 System Balancing Algorithms (On-Design Model) |
|
|
419 | (2) |
|
9.3.2 Balancing Fixed-Area Systems by Extraction/Injection (Off Design Analysis) |
|
|
421 | (1) |
|
9.3.3 Experimental Realization of HDH with and without Extraction/Injection |
|
|
422 | (3) |
|
9.3.4 Summary of HDH Characteristics Related to Extraction/Injection |
|
|
425 | (1) |
|
9.4 Bubble Column Dehumidification |
|
|
426 | (7) |
|
9.4.1 Modeling and Experimental Validation |
|
|
428 | (1) |
|
9.4.2 Multistage Bubble Column Dehumidifiers |
|
|
428 | (3) |
|
9.4.3 Coil-Free Bubble Columns |
|
|
431 | (2) |
|
9.5 Effect of High Salinity Feed on HDH Performance |
|
|
433 | (4) |
|
|
437 | (1) |
|
|
437 | (2) |
|
|
439 | |
10 Freezing-Melting Desalination Processes |
|
433 | (46) |
|
|
|
|
447 | (1) |
|
10.2 Background or History of Freezing-Melting Process |
|
|
448 | (2) |
|
10.3 Principles of Freezing-Melting Process |
|
|
450 | (1) |
|
10.4 Major Types of Freezing-Melting Process |
|
|
451 | (1) |
|
10.5 Direct-Contact Freezing |
|
|
451 | (8) |
|
|
451 | (6) |
|
10.5.1.1 Ice-Crystallization Unit |
|
|
452 | (4) |
|
10.5.1.2 Hydrate Formation |
|
|
456 | (1) |
|
10.5.2 Ice Separation Unit |
|
|
457 | (1) |
|
|
457 | (3) |
|
|
459 | (1) |
|
|
459 | (1) |
|
10.7 Direct-Contact Eutectic Freezing |
|
|
459 | (1) |
|
10.8 Indirect-Contact FM Process |
|
|
460 | (4) |
|
|
460 | (4) |
|
10.8.1.1 Progressive Static Layer Growth System as Block of Ice |
|
|
460 | (1) |
|
10.8.1.2 Progressive Dynamic Layer Growth (Falling Film Type) |
|
|
461 | (1) |
|
10.8.1.3 Progressive Dynamic Layer Growth (Circular Tube Type) |
|
|
462 | (1) |
|
10.8.1.4 Melting of Progressive Layer or Block Crystals |
|
|
462 | (1) |
|
10.8.1.5 Progressive Layer Crystallization on Rotating Drum |
|
|
463 | (1) |
|
10.8.1.6 Progressive Suspension Growth |
|
|
463 | (1) |
|
|
464 | (1) |
|
10.9 Pressure and Vacuum Processes |
|
|
464 | (2) |
|
|
464 | (1) |
|
10.9.2 Vapor-Compression System |
|
|
465 | (1) |
|
|
465 | (1) |
|
10.9.4 Multiple-Phase Transformation |
|
|
465 | (1) |
|
10.9.5 Pressure-Shift Nucleation and FM Process |
|
|
466 | (1) |
|
|
466 | (3) |
|
|
469 | (1) |
|
|
470 | (1) |
|
|
471 | (1) |
|
|
471 | (8) |
11 Ion Exchange in Desalination |
|
479 | (18) |
|
|
|
480 | (1) |
|
11.2 Early Ion Exchange Desalination Processes |
|
|
480 | (2) |
|
|
482 | (1) |
|
11.4 Ion Exchange Softening as Pre-Treatment |
|
|
483 | (2) |
|
11.5 Softening by Ion Exchange |
|
|
485 | (1) |
|
11.6 Boron-Selective Ion Exchange Resins as Post-Treatment |
|
|
486 | (5) |
|
|
491 | (2) |
|
11.8 New Resin Bead Design |
|
|
493 | (1) |
|
|
494 | (1) |
|
|
495 | (2) |
12 Electrosorption of Heavy Metals with Capacitive Deionization: Water Reuse, Desalination and Resources Recovery |
|
497 | (28) |
|
|
|
|
|
498 | (4) |
|
12.1.1 Removal of Heavy Metals from Aqueous Solutions |
|
|
498 | (2) |
|
12.1.2 Capacitive Deionization |
|
|
500 | (2) |
|
12.2 Experimental Methods |
|
|
502 | (4) |
|
12.2.1 CDI Treatment System |
|
|
502 | (2) |
|
12.2.2 Feed Water Quality and Sample Analysis |
|
|
504 | (2) |
|
12.3 Results and Discussions |
|
|
506 | (12) |
|
12.3.1 CDI Voltage and Current Profiles |
|
|
506 | (1) |
|
12.3.2 Removal of Heavy Metals from Electrolytes |
|
|
507 | (7) |
|
12.3.3 Removal of Cyanide |
|
|
514 | (4) |
|
|
518 | |
|
|
516 | (9) |
13 Solar Desalination |
|
525 | (42) |
|
|
|
|
|
|
|
526 | (2) |
|
|
528 | (2) |
|
13.2.1 Conventional Desalination |
|
|
528 | (1) |
|
13.2.2 Renewable Energy Driven Desalination |
|
|
528 | (1) |
|
13.2.3 Solar Energy-Driven Desalination |
|
|
529 | (1) |
|
13.3 Direct Solar Desalination |
|
|
530 | (3) |
|
|
530 | (2) |
|
13.3.2 Solar-Driven Humidification- Dehumidification (HDH) |
|
|
532 | (1) |
|
13.4 Indirect Solar Desalination |
|
|
533 | (17) |
|
13.4.1 Phase Change Processes |
|
|
533 | (9) |
|
13.4.1.1 Solar-Assisted Multi-Stage Flash |
|
|
534 | (2) |
|
13.4.1.2 Solar-Assisted Multiple- Effect Distillation |
|
|
536 | (5) |
|
13.4.1.3 Solar-Assisted Heat Pumps (HP) |
|
|
541 | (1) |
|
13.4.2 Membrane Processes |
|
|
542 | (8) |
|
13.4.2.1 Solar-Driven Reverse Osmosis |
|
|
542 | (3) |
|
13.4.2.2 Solar-Driven Electro-Dialysis |
|
|
545 | (3) |
|
13.4.2.3 Solar Thermal Driven Membrane Distillation (MD) |
|
|
548 | (2) |
|
13.5 Non-Conventional Solar Desalination |
|
|
550 | (3) |
|
13.5.1 Solar-Assisted Passive Vacuum |
|
|
550 | (3) |
|
13.5.2 Power-Water Cogeneration |
|
|
553 | (1) |
|
13.6 Solar Integration and Environmental Considerations |
|
|
553 | (6) |
|
13.6.1 System Integration |
|
|
553 | (1) |
|
13.6.2 Solar System Considerations |
|
|
554 | (2) |
|
|
556 | (1) |
|
|
556 | (1) |
|
|
557 | (1) |
|
13.6.6 Environmental Impact |
|
|
558 | (1) |
|
|
559 | (1) |
|
|
560 | (7) |
14 Wind Energy Powered Desalination Systems |
|
567 | (80) |
|
|
|
|
|
568 | (2) |
|
14.2 Basic Wind Technology Concepts |
|
|
570 | (20) |
|
14.2.1 Brief Classification of Wind Energy Exploitation Systems |
|
|
570 | (4) |
|
14.2.2 Horizontal-Axis Wind Turbine Components |
|
|
574 | (16) |
|
14.2.2.1 Energy Acquisition Subsystem |
|
|
575 | (4) |
|
14.2.2.2 Mechanical Power Transmission Subsystem |
|
|
579 | (4) |
|
|
583 | (1) |
|
14.2.2.4 Electrical Subsystem |
|
|
584 | (5) |
|
14.2.2.5 Control Subsystem |
|
|
589 | (1) |
|
14.2.2.6 Support Subsystem |
|
|
589 | (1) |
|
14.3 Particular Characteristics of Wind Energy |
|
|
590 | (8) |
|
14.3.1 Wind Resource Estimation |
|
|
591 | (7) |
|
14.4 Classification of Wind-Driven Desalination Systems |
|
|
598 | (10) |
|
14.4.1 On-Grid Wind Energy Systems for Desalination |
|
|
600 | (8) |
|
14.4.1.1 Wind Turbines that Dump all the Generated Energy into the Grid |
|
|
602 | (4) |
|
14.4.1.2 Micro-Grids Interconnected with a Conventional Grid |
|
|
606 | (2) |
|
14.5 Off-Grid Wind Energy Systems for Desalination |
|
|
608 | (22) |
|
14.5.1 Small-Scale Systems |
|
|
608 | (12) |
|
14.5.1.1 Electrical Interface in the Coupling between Wind Energy and Desalination Unit |
|
|
609 | (8) |
|
14.5.1.2 Mechanical and Hydrostatic Interfaces in the Coupling between Wind Energy and Desalination Unit |
|
|
617 | (3) |
|
14.5.2 Medium- and Large-Scale Systems |
|
|
620 | (31) |
|
14.5.2.1 Electrical Interface in the Coupling between Wind Energy System and Desalination Unit |
|
|
621 | (7) |
|
14.5.2.2 Mechanical and Hydrostatic Interfaces in the Coupling between Wind Energy System and Desalination Unit |
|
|
628 | (2) |
|
14.6 Wind-Diesel Systems for Desalination |
|
|
630 | (4) |
|
14.7 Conclusions and Future Trends |
|
|
634 | (4) |
|
|
638 | (1) |
|
|
639 | (8) |
15 Geothermal Desalination |
|
647 | (36) |
|
|
|
648 | (1) |
|
15.2 Renewable Energy Powered Desalination |
|
|
649 | (1) |
|
15.3 Geothermal Energy Utilization Around the World |
|
|
649 | (2) |
|
15.4 The Rationale - Why Geothermal Desalination? |
|
|
651 | (5) |
|
|
652 | (1) |
|
|
653 | (1) |
|
15.4.3 Efficient Resource Utilization |
|
|
654 | (1) |
|
15.4.4 Integrated Uses for Geothermal Energy Sources |
|
|
655 | (1) |
|
15.5 Global Geothermal Desalination Potential |
|
|
656 | (5) |
|
15.5.1 Geothermal Water Composition |
|
|
657 | (2) |
|
15.5.2 Geothermal Water for Thermal Desalination |
|
|
659 | (1) |
|
15.5.3 Geothermal Water for Membrane Desalination |
|
|
660 | (1) |
|
15.6 Geothermal Desalination - State of the Art |
|
|
661 | (6) |
|
15.6.1 Thermal Desalination Processes |
|
|
661 | (2) |
|
15.6.2 Membrane Desalination Processes |
|
|
663 | (4) |
|
15.7 Desalination Process Selection |
|
|
667 | (3) |
|
|
667 | (1) |
|
15.7.2 Geothermal Energy Quality and Quantity and other Renewable Energy Sources |
|
|
668 | (1) |
|
15.7.3 Desalination Technology |
|
|
668 | (1) |
|
|
668 | (1) |
|
|
669 | (1) |
|
|
669 | (1) |
|
15.7.7 Techno-Economic Requirements |
|
|
669 | (1) |
|
15.8 Challenges and Considerations for Geothermal Desalination Implementation |
|
|
670 | (4) |
|
|
671 | (2) |
|
15.8.2 Geological Hazards |
|
|
673 | (1) |
|
15.8.3 Waste Heat Releases |
|
|
673 | (1) |
|
15.8.4 Atmospheric Emissions |
|
|
673 | (1) |
|
|
674 | (1) |
|
15.8.6 Noise and Social Impacts |
|
|
674 | (1) |
|
15.9 Techno-Economics of Geothermal Desalination |
|
|
674 | (2) |
|
|
676 | (2) |
|
|
678 | (5) |
16 Future Expectations |
|
683 | (38) |
|
|
683 | (1) |
|
16.2 Historical Trends in Fresh Water Supply Development |
|
|
684 | (3) |
|
16.3 Emerging Trends and Directions in Alternative Water Supply Development |
|
|
687 | (13) |
|
16.3.1 Desalination of Impaired Waters |
|
|
692 | (4) |
|
16.3.1.1 El Paso's Kay Bailey Hutchison Desalting Plant |
|
|
693 | (3) |
|
16.3.2 Impaired Water Usage in Energy Production |
|
|
696 | (3) |
|
16.3.2.1 Palo Verde Nuclear Power Plant, Arizona |
|
|
698 | (1) |
|
|
699 | (1) |
|
16.4 Desalination for Oil and Gas |
|
|
700 | (12) |
|
16.4.1 Treatment of Produced Water from Conventional Reservoirs |
|
|
701 | (1) |
|
16.4.2 Designer Waterflooding for Enhanced Oil Recovery |
|
|
702 | (3) |
|
16.4.2.1 Conventional Reservoirs |
|
|
702 | (2) |
|
|
704 | (1) |
|
|
705 | (1) |
|
16.4.4 Treatment of Hydrofracking Flowback |
|
|
706 | (4) |
|
16.4.5 Water Treatment and the Oil Sands |
|
|
710 | (2) |
|
16.5 The Future of Desalination Technologies |
|
|
712 | (4) |
|
16.5.1 Biomimetic and Nanotech Membranes |
|
|
715 | (1) |
|
16.5.2 Desalination with Renewables |
|
|
716 | (1) |
|
|
716 | (1) |
|
|
717 | (4) |
List of Contributors |
|
721 | (16) |
Index |
|
737 | |