Chapter 1 Fundamental of Digital Video Compressions |
|
1 | (32) |
|
1.1 Fundamentals of Information Theory |
|
|
2 | (4) |
|
|
2 | (2) |
|
1.1.2 Properties of Block Codes |
|
|
4 | (2) |
|
|
6 | (5) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (2) |
|
1.3 Fundamentals of the Human Visual System |
|
|
11 | (1) |
|
1.3.1 Color Space Conversion and Spectral Redundancy |
|
|
11 | (1) |
|
1.4 Video Coding Fundamentals |
|
|
12 | (4) |
|
1.4.1 Intrinsic Redundancy of Video Source |
|
|
13 | (1) |
|
1.4.2 Temporal Redundancy |
|
|
14 | (2) |
|
|
16 | (1) |
|
1.5 Block-Based Transform |
|
|
16 | (4) |
|
1.5.1 Karhunen-Loeve Transform |
|
|
17 | (1) |
|
1.5.2 Discrete Cosine Transform |
|
|
18 | (1) |
|
1.5.3 Fast Discrete Cosine Transform Algorithms |
|
|
18 | (1) |
|
1.5.4 Integer Discrete Cosine Transform |
|
|
18 | (1) |
|
1.5.5 Adaptive Block Size Transform |
|
|
19 | (1) |
|
1.6 Frame-Based Transform |
|
|
20 | (7) |
|
1.6.1 Subband Decomposition |
|
|
20 | (1) |
|
1.6.2 Discrete Wavelet Transform |
|
|
21 | (2) |
|
1.6.3 Embedded Zerotree Wavelet |
|
|
23 | (2) |
|
1.6.4 Set Partitioning in Hierarchical Trees (SPIHT) |
|
|
25 | (1) |
|
1.6.5 Temporal Subband Decomposition |
|
|
26 | (1) |
|
|
27 | (2) |
|
|
29 | (1) |
|
|
29 | (4) |
Chapter 2 Digital Video Coding Standards |
|
33 | (66) |
|
|
33 | (1) |
|
2.2 General Principles of Digital Video Coding Standards |
|
|
34 | (2) |
|
2.2.1 Basic Principles of Video Coding Standards |
|
|
34 | (2) |
|
2.2.2 General Procedure of Encoding and Decoding |
|
|
36 | (1) |
|
2.3 Basic Tools for Digital Video Coding Standards |
|
|
36 | (17) |
|
2.3.1 Tools for Removing Spatial Redundancy |
|
|
37 | (7) |
|
2.3.1.1 Block Transformation |
|
|
37 | (3) |
|
|
40 | (1) |
|
2.3.1.3 DC and AC Prediction |
|
|
41 | (2) |
|
2.3.1.4 Intra Frame Coding with Directional Spatial Prediction |
|
|
43 | (1) |
|
2.3.2 Tools for Removing Temporal Redundancy |
|
|
44 | (3) |
|
2.3.2.1 Motion-Compensated Predictive Coding |
|
|
44 | (1) |
|
2.3.2.2 Structure for Different Frame Types |
|
|
45 | (2) |
|
2.3.3 Tools for Removing Statistical Redundancy, Variable Length Coding (VLC) |
|
|
47 | (6) |
|
|
48 | (1) |
|
2.3.3.2 Arithmetic Coding |
|
|
49 | (2) |
|
2.3.3.3 Content-Based Arithmetic Encoding (CAE) for Binary Shape Coding |
|
|
51 | (2) |
|
2.4 Enhancement Tools for Improving Functionality and Coding Efficiency |
|
|
53 | (13) |
|
2.4.1 Tools for Increasing Functionality |
|
|
53 | (5) |
|
2.4.1.1 Object-Based Coding |
|
|
53 | (1) |
|
|
54 | (3) |
|
2.4.1.3 Tools for Error Resilience |
|
|
57 | (1) |
|
2.4.2 Tools for Increasing Coding Efficiency |
|
|
58 | (8) |
|
|
58 | (1) |
|
2.4.2.2 Adaptive Block Size Motion Compensation |
|
|
59 | (1) |
|
2.4.2.3 Motion Compensation with Multiple References |
|
|
60 | (1) |
|
|
61 | (4) |
|
2.4.2.5 Global Motion Compensation |
|
|
65 | (1) |
|
2.4.2.6 Shape-Adaptive DCT |
|
|
66 | (1) |
|
2.5 Brief Summary of Video Coding Standards |
|
|
66 | (14) |
|
2.5.1 Summary of ISO/IEC Standards of Image and Video Coding |
|
|
67 | (7) |
|
|
67 | (1) |
|
|
68 | (3) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
74 | (3) |
|
|
74 | (1) |
|
|
75 | (2) |
|
2.5.3 MPEG/ITU Jointly Developed H.264/AVC |
|
|
77 | (3) |
|
2.6 Video Compression Encoding Technologies |
|
|
80 | (15) |
|
|
81 | (1) |
|
|
81 | (2) |
|
2.6.3 Mode Decision and Rate-Distortion Optimization |
|
|
83 | (4) |
|
2.6.4 Rate Control Algorithms |
|
|
87 | (12) |
|
2.6.4.1 MPEG-2 Rate Control |
|
|
87 | (3) |
|
2.6.4.2 MPEG-4 Rate Control |
|
|
90 | (1) |
|
2.6.4.3 H.264/AVC Rate Control |
|
|
90 | (5) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
96 | (3) |
Chapter 3 Video Transcoding Algorithms and Systems Architecture |
|
99 | (32) |
|
3.1 General Concepts for the Transcoder |
|
|
99 | (6) |
|
3.1.1 Transcoder for SDTV to HDTV Migration |
|
|
99 | (1) |
|
3.1.2 Multi-Format and Compatible Receiver and Recorder |
|
|
99 | (1) |
|
3.1.3 Transcoder for Broadcasting and Statistical Multiplexing |
|
|
100 | (1) |
|
3.1.4 Multimedia Server for Communications Using MPEG-7 |
|
|
101 | (1) |
|
3.1.5 Universal Multimedia Access |
|
|
101 | (2) |
|
3.1.6 Watermarking, Logo Insertion and Picture-in-Picture |
|
|
103 | (1) |
|
3.1.7 Studio Applications |
|
|
104 | (1) |
|
3.2 Transcoder for Bit Rate and Quality Adaptation |
|
|
105 | (8) |
|
3.2.1 Cascaded Transcoder |
|
|
105 | (6) |
|
3.2.1.1 Architecture 1: Truncation of the High Frequency Coefficients |
|
|
107 | (1) |
|
3.2.1.2 Architecture 2: Re-quantizing the DCT Frequency Coefficients |
|
|
108 | (1) |
|
3.2.1.3 Architecture 3: Re-Encoding with Old Motion Vectors and Mode Decisions |
|
|
108 | (1) |
|
3.2.1.4 Architecture 4: Re-Encoding with Old Motion Vectors |
|
|
108 | (1) |
|
3.2.1.5 Summary and Experimental Results |
|
|
109 | (1) |
|
3.2.1.6 Optimized Spatial Domain Transcoder |
|
|
110 | (1) |
|
3.2.2 Frequency Domain Transcoder |
|
|
111 | (2) |
|
3.3 Fine Granularity Scalability |
|
|
113 | (4) |
|
|
113 | (2) |
|
|
115 | (2) |
|
3.4 FGS to MPEG-4 Simple Profile Transcoding |
|
|
117 | (10) |
|
3.4.1 Application Scenario for an FGS-to-SP Transcoding |
|
|
118 | (1) |
|
3.4.2 Architectures for an FGS-to-SP Transcoding |
|
|
119 | (4) |
|
3.4.2.1 Rate Control for Transcoding |
|
|
121 | (2) |
|
3.4.3 Experimental Results |
|
|
123 | (9) |
|
3.4.3.1 Static Test without Rate Control |
|
|
123 | (1) |
|
3.4.3.2 Static Test with Rate Control |
|
|
123 | (2) |
|
3.4.3.3 Dynamic Test Using the MPEG-21 Multimedia Test Bed |
|
|
125 | (2) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (3) |
Chapter 4 Topics on Optimization of Transcoding Performance |
|
131 | (34) |
|
|
131 | (1) |
|
4.2 Reduced Spatial Resolution Transcoder |
|
|
132 | (10) |
|
4.2.1 Spatial Downscaling in the Compressed Domain |
|
|
133 | (2) |
|
4.2.2 Motion Vector Adaptation |
|
|
135 | (1) |
|
4.2.3 Spatial Domain Reduced Spatial Resolution Architectures |
|
|
136 | (6) |
|
4.2.3.1 Reduced Spatial Resolution Architectures l |
|
|
136 | (1) |
|
4.2.3.2 Reduced Spatial Resolution Architectures 2 |
|
|
136 | (2) |
|
4.2.3.3 Reduced Spatial Resolution Architectures 3 |
|
|
138 | (1) |
|
4.2.3.4 Reduced Spatial Resolution Architectures 4 |
|
|
139 | (1) |
|
4.2.3.5 Reduced Spatial Resolution Architectures 5 |
|
|
139 | (1) |
|
4.2.3.6 Reduced Spatial Resolution Architectures 6 |
|
|
140 | (1) |
|
4.2.3.7 Complexity and Performance Analysis |
|
|
140 | (1) |
|
4.2.3.8 Frequency Domain Reduced Spatial Resolution Architectures |
|
|
141 | (1) |
|
4.3 Temporal Resolution Adaptation |
|
|
142 | (4) |
|
4.3.1 Motion Vector Refinement |
|
|
143 | (2) |
|
|
145 | (1) |
|
4.3.3 Transcoding for Fast Forward/Reverse Playback |
|
|
145 | (1) |
|
4.4 Syntactical Adaptation |
|
|
146 | (3) |
|
4.4.1 JPEG/MPEG-2 to MPEG-1 and DV to MPEG-2 Transcoding |
|
|
146 | (1) |
|
4.4.2 MPEG-2 to MPEG-4 Transcoding |
|
|
147 | (1) |
|
4.4.3 MPEG-4 FGS Transcoding |
|
|
148 | (1) |
|
4.5 Error-Resilient Transcoding |
|
|
149 | (1) |
|
4.6 Logo Insertion and Watermarking |
|
|
149 | (3) |
|
|
152 | (1) |
|
|
152 | (3) |
|
4.8.1 Bit Stream Switching |
|
|
153 | (1) |
|
4.8.2 Splicing and Random Access |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (1) |
|
4.9 H.264/AVC Picture-in-Picture Transcoding |
|
|
155 | (5) |
|
4.9.1 PIP Cascaded Transcoder Architecture |
|
|
156 | (1) |
|
4.9.2 Partial Re-encoding Transcoder Architecture (PRETA) |
|
|
157 | (8) |
|
4.9.2.1 Intra-Mode Refinement |
|
|
157 | (1) |
|
4.9.2.2 Inter-Mode Refinement |
|
|
158 | (1) |
|
4.9.2.3 Simulation Results |
|
|
159 | (1) |
|
4.10 Transcoding for Statistical Multiplexing |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
161 | (4) |
Chapter 5 Video Transport Transcoding |
|
165 | (28) |
|
5.1 Overview of MPEG-2 System |
|
|
165 | (4) |
|
|
165 | (1) |
|
5.1.2 Transport Stream and Program Stream |
|
|
166 | (1) |
|
5.1.3 Transport Stream Coding Structure and Parameters |
|
|
167 | (2) |
|
5.1.4 Program Stream Coding Structure and Parameters |
|
|
169 | (1) |
|
5.2 MPEG-2 System Layer Transcoding |
|
|
169 | (4) |
|
5.2.1 Transcoding features of Transport Stream |
|
|
169 | (3) |
|
5.2.2 Transcoding between Transport Stream and Program Stream |
|
|
172 | (1) |
|
5.3 Transcoding between CBR and VBR |
|
|
173 | (14) |
|
5.3.1 CBR Video Coding Algorithm |
|
|
173 | (3) |
|
5.3.2 VBR Video Coding Algorithm |
|
|
176 | (6) |
|
5.3.2.1 General Principle of VBR Coding |
|
|
176 | (2) |
|
5.3.2.2 Two-Pass VBR Coding Algorithms |
|
|
178 | (4) |
|
5.3.3 Comparison of CBR and VBR |
|
|
182 | (1) |
|
5.3.4 An Example of Transcoding between Transport Stream and Program Stream |
|
|
183 | (4) |
|
5.4 Transport of VBR Streams over Constant Bandwidth Channel |
|
|
187 | (3) |
|
5.4.1 Simple Multiplexer with VBR Streams |
|
|
187 | (1) |
|
5.4.2 Multiple VBR Streams for Open-Loop Intelligent Multiplexer |
|
|
188 | (1) |
|
5.4.3 Multiple VBR Streams for Closed-Loop Intelligent Multiplexer |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
190 | (3) |
Chapter 6 System Clock Recovery and Time Stamping |
|
193 | (34) |
|
6.1 Basics on Video Synchronization |
|
|
193 | (3) |
|
6.2 System Clock Recovery |
|
|
196 | (9) |
|
6.2.1 Requirements on Video System Clock |
|
|
196 | (1) |
|
6.2.2 MPEG-2 Systems Timing Model |
|
|
197 | (2) |
|
6.2.3 Decoder STC Synchronization |
|
|
199 | (5) |
|
6.2.4 Required Decoder Buffer Size for Video Synchronization |
|
|
204 | (1) |
|
6.3 Video Decoding and Presentation Time Stamps |
|
|
205 | (16) |
|
|
205 | (4) |
|
6.3.2 Computation of MPEG-2 Video PTS and DTS |
|
|
209 | (12) |
|
|
221 | (1) |
|
|
222 | (2) |
|
|
224 | (3) |
Chapter 7 Transcoder Video Buffer And Hypothetical Reference Decoder |
|
227 | (34) |
|
7.1 Video Buffer Management |
|
|
227 | (2) |
|
7.2 Conditions for Preventing Decoder Buffer Underflow and Overflow |
|
|
229 | (3) |
|
7.3 Hypothetical Reference Decoder |
|
|
232 | (11) |
|
|
232 | (1) |
|
7.3.2 H.261 and H.263 HRDs |
|
|
232 | (1) |
|
7.3.3 MPEG-2 Video Buffering Verifier (VBV) |
|
|
232 | (4) |
|
7.3.4 MPEG-4 Video Buffering Verifier |
|
|
236 | (4) |
|
7.3.5 Comparison between MPEG-2 VBV and MPEG-4 VBV |
|
|
240 | (1) |
|
7.3.6 HRD in H.264/MPEG-4 AVC |
|
|
240 | (3) |
|
7.3.6.1 Operation of the CAT-LB HRD |
|
|
241 | (1) |
|
7.3.6.2 Low-Delay Operation |
|
|
242 | (1) |
|
7.3.6.3 Stream Constraints |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
242 | (1) |
|
7.4 Buffer Analysis of Video Transcoders |
|
|
243 | (12) |
|
|
243 | (3) |
|
7.4.2 Buffer Dynamics of Video Transcoders |
|
|
246 | (1) |
|
7.4.3 Buffer Dynamics of the Encoder-Decoder Only System |
|
|
246 | (3) |
|
7.4.4 Transcoder with a Fixed Compression Ratio |
|
|
249 | (6) |
|
7.5 Regenerating Time Stamps in Transcoder |
|
|
255 | (2) |
|
|
257 | (1) |
|
|
257 | (1) |
|
|
258 | (3) |
Chapter 8 Cryptography and Conditional Access for Video Transport Systems |
|
261 | (50) |
|
8.1 Basic Terminology and Concepts |
|
|
261 | (5) |
|
8.1.1 Functions (One-to-One, One-Way, Trapdoor One-Way) |
|
|
262 | (1) |
|
8.1.2 Basic Concepts of Encryption and Decryption |
|
|
263 | (3) |
|
8.2 Symmetric-Key Ciphers |
|
|
266 | (6) |
|
8.2.1 Substitution and Permutation Ciphers |
|
|
267 | (2) |
|
8.2.2 Product Cipher System |
|
|
269 | (2) |
|
8.2.3 Stream Cipher and the Key Space |
|
|
271 | (1) |
|
8.3 Data Encryption Standard |
|
|
272 | (8) |
|
|
273 | (2) |
|
8.3.2 Input Data Preparation |
|
|
275 | (1) |
|
8.3.3 The Core DES Function |
|
|
276 | (4) |
|
|
280 | (4) |
|
8.5 Cascade Cipher and Multiple Encryption |
|
|
284 | (4) |
|
|
288 | (7) |
|
8.6.1 RSA Public-Key Encryption |
|
|
289 | (2) |
|
8.6.2 Diffie-Hellman Key Agreement |
|
|
291 | (2) |
|
|
293 | (2) |
|
|
295 | (11) |
|
8.7.1 Functions of Conditional Access System |
|
|
296 | (1) |
|
8.7.2 Configuration of a Conditional Access System |
|
|
297 | (7) |
|
8.7.3 Termination of Short Blocks in Block Cipher for Transport Packets |
|
|
304 | (1) |
|
8.7.4 Multi-Hop Encryption |
|
|
304 | (2) |
|
|
306 | (1) |
|
|
306 | (1) |
|
|
307 | (4) |
Chapter 9 Application and Implementation of Video Transcoders |
|
311 | (60) |
|
9.1 MPEG-2 to MPEG-4 Transcoder |
|
|
311 | (24) |
|
|
312 | (2) |
|
9.1.2 Transcoding Architecture and Drift Error Analysis |
|
|
314 | (4) |
|
9.1.2.1 Reference Architecture |
|
|
315 | (1) |
|
9.1.2.2 Drift Error Analysis of Open-Loop Architecture |
|
|
316 | (2) |
|
9.1.3 Transcoding at Macroblock Layer |
|
|
318 | (3) |
|
9.1.3.1 Mixed Block Processing |
|
|
318 | (1) |
|
9.1.3.2 Motion Vector Mapping |
|
|
319 | (1) |
|
9.1.3.3 Texture Down-Sampling |
|
|
320 | (1) |
|
9.1.4 Architectures for Drift Compensation |
|
|
321 | (10) |
|
9.1.4.1 Drift Compensation in Reduced Resolution |
|
|
322 | (1) |
|
9.1.4.2 Drift Compensation in Original Resolution |
|
|
323 | (1) |
|
9.1.4.3 Partial-Encode Architecture |
|
|
324 | (1) |
|
9.1.4.4 Intra Refresh Architecture |
|
|
325 | (1) |
|
9.1.4.5 Experimental Results |
|
|
326 | (5) |
|
9.1.5 Motion Vector Refinement |
|
|
331 | (2) |
|
9.1.6 Motion Vector Re-Estimation and Residual Re-Estimation |
|
|
333 | (1) |
|
9.1.7 Summary of MPEG-2 to MPEG-4 Transcoder |
|
|
334 | (1) |
|
9.2 Error Resilience Video Transcoder |
|
|
335 | (5) |
|
9.2.1 Basic Concept of Error Resilience Transcoding |
|
|
335 | (1) |
|
9.2.2 Techniques for Spatial and Temporal Error Resilience Coding |
|
|
336 | (2) |
|
9.2.3 Error Resilience Transcoding Using AIR |
|
|
338 | (2) |
|
9.3 Object-Based Transcoding |
|
|
340 | (27) |
|
|
341 | (1) |
|
9.3.2 Object-Based Transcoding Framework and Strategies |
|
|
342 | (3) |
|
9.3.2.1 Object-Based Adaptive Transcoding System |
|
|
343 | (1) |
|
9.3.2.2 Strategies of Object-Based Transcoding |
|
|
344 | (1) |
|
9.3.3 Dynamic Programming Approach |
|
|
345 | (4) |
|
9.3.3.1 Texture Model for Rate Control |
|
|
345 | (1) |
|
9.3.3.2 QP Selections in the Transcoder |
|
|
346 | (2) |
|
9.3.3.3 Frameskip Analysis |
|
|
348 | (1) |
|
9.3.4 Meta-Data-Based Approach |
|
|
349 | (4) |
|
|
350 | (1) |
|
9.3.4.2 Key Object Identification |
|
|
350 | (1) |
|
9.3.4.3 Variable Temporal Resolution |
|
|
351 | (2) |
|
9.3.5 Transcoding Architecture |
|
|
353 | (2) |
|
|
355 | (11) |
|
9.3.6.1 Bit Allocation among Objects |
|
|
355 | (3) |
|
9.3.6.2 Results with Key Object Identification |
|
|
358 | (2) |
|
9.3.6.3 Discussion of Shape Hints |
|
|
360 | (3) |
|
9.3.6.4 Results with Varying Temporal Resolution |
|
|
363 | (3) |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
367 | (1) |
|
|
368 | (3) |
Chapter 10 Universal Multimedia Access Using MPEG-21 Digital Item Adaptation |
|
371 | (20) |
|
|
371 | (1) |
|
10.2 Overview of Universal Multimedia Access |
|
|
372 | (2) |
|
|
374 | (9) |
|
|
374 | (4) |
|
10.3.2 Overview of Digital Item Adaptation |
|
|
378 | (3) |
|
10.3.3 Relation between DIA and Other Parts of MPEG-21 |
|
|
381 | (1) |
|
10.3.4 Relation between Digital Item Adaptation and MPEG-7 |
|
|
382 | (1) |
|
10.4 Resource Adaptation Engine |
|
|
383 | (3) |
|
10.4.1 Design Goals and Issues |
|
|
383 | (1) |
|
10.4.2 Transcoding Background |
|
|
383 | (1) |
|
|
384 | (1) |
|
10.4.4 Comparison between Transcoding and Scalable Coding |
|
|
385 | (1) |
|
10.5 Description Adaptation Engine |
|
|
386 | (2) |
|
10.5.1 Motivations and Goals |
|
|
386 | (1) |
|
10.5.2 Metadata Adaptation Hints |
|
|
387 | (1) |
|
|
388 | (1) |
|
|
388 | (1) |
|
|
389 | (2) |
Chapter 11 End-to-End Video Streaming and Transcoding System |
|
391 | (24) |
|
11.1 Elements of Video Streaming and Transcoding System |
|
|
391 | (2) |
|
11.2 MPEG-4 Over IP Networks |
|
|
393 | (4) |
|
11.2.1 MPEG-4 Protocol Layers |
|
|
393 | (3) |
|
11.2.2 Multipurpose Internet Mail Extensions (MIME) Types |
|
|
396 | (1) |
|
11.2.3 Real Time Streaming Protocol (RTSP) |
|
|
397 | (1) |
|
11.3 MPEG-4 Over IP Test Bed |
|
|
397 | (8) |
|
11.3.1 FGS-Based Streaming Test Bed |
|
|
398 | (4) |
|
11.3.1.1 FGS-Based Video Content Server |
|
|
398 | (3) |
|
|
401 | (1) |
|
|
402 | (2) |
|
|
404 | (1) |
|
11.3.4 Experimental Results |
|
|
405 | (1) |
|
11.4 MPEG-4 Transcoding on the Test Bed |
|
|
405 | (7) |
|
11.4.1 Rate Control for a Transcoder |
|
|
407 | (2) |
|
11.4.2 Dynamic Test for a Transcoder |
|
|
409 | (3) |
|
|
412 | (1) |
|
|
412 | (1) |
|
|
412 | (1) |
|
|
413 | (2) |
Index |
|
415 | |