Muutke küpsiste eelistusi

E-raamat: Discrete Element Method to Model 3D Continuous Materials [Wiley Online]

  • Formaat: 196 pages
  • Ilmumisaeg: 20-Mar-2015
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1119103045
  • ISBN-13: 9781119103042
Teised raamatud teemal:
  • Wiley Online
  • Hind: 174,45 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 196 pages
  • Ilmumisaeg: 20-Mar-2015
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1119103045
  • ISBN-13: 9781119103042
Teised raamatud teemal:

Complex behavior models (plasticity, cracks, visco elascticity) face some theoretical difficulties for the determination of the behavior law at the continuous scale. When homogenization fails to give the right behavior law, a solution is to simulate the material at a meso scale in order to simulate directly a set of discrete properties that are responsible of the macroscopic behavior. The discrete element model has been developed for granular material. The proposed set shows how this method is capable to solve the problem of complex behavior that are linked to discrete meso scale effects. This first book solves the local problem, the second one presents a coupling approach to link the structural effects to the local ones, the third book presents the software workbench that includes all the theoretical developments.

List of Figures
ix
List of Tables
xv
Preface xvii
Introduction xxi
Chapter 1 State of the Art: Discrete Element Modeling
1(32)
1.1 Introduction
1(2)
1.2 Classification of discrete methods
3(13)
1.2.1 Quantum mechanical methods
4(1)
1.2.2 Atomistic methods
5(3)
1.2.3 Mesoscopic discrete methods
8(8)
1.3 Discrete element method for continuous materials
16(1)
1.4 Discrete-continuum transition: macroscopic variables
17(14)
1.4.1 Stress tensor for discrete systems
18(3)
1.4.2 Strain tensor for discrete systems
21(10)
1.5 Conclusion
31(2)
Chapter 2 Discrete Element Modeling of Mechanical Behavior of Continuous Materials
33(60)
2.1 Introduction
33(2)
2.2 Explicit dynamic algorithm
35(2)
2.3 Construction of the discrete domain
37(19)
2.3.1 The cooker compaction algorithm
39(5)
2.3.2 Geometrical characterization of the discrete domain
44(12)
2.4 Mechanical behavior modeling
56(31)
2.4.1 Cohesive beam model
58(6)
2.4.2 Calibration of the cohesive beam static parameters
64(15)
2.4.3 Calibration of the cohesive beam dynamic parameters
79(8)
2.5 Conclusion
87(6)
Chapter 3 Discrete Element Modeling of Thermal Behavior of Continuous Materials
93(22)
3.1 Introduction
93(2)
3.2 General description of the method
95(2)
3.2.1 Characterization of field variable variation in discrete domain
95(1)
3.2.2 Application to heat conduction
96(1)
3.3 Thermal conduction in 3D ordered discrete domains
97(3)
3.4 Thermal conduction in 3D disordered discrete domains
100(6)
3.4.1 Determination of local parameters for each discrete element
102(1)
3.4.2 Calculation of discrete element transmission surface
103(1)
3.4.3 Calculation of local volume fraction
104(1)
3.4.4 Interactions between each discrete element and its neighbors
105(1)
3.5 Validation
106(7)
3.5.1 Cylindrical beam in contact with a hot plane
106(1)
3.5.2 Dynamically heated sheet
107(6)
3.6 Conclusion
113(2)
Chapter 4 Discrete Element Modeling of Brittle Fracture
115(26)
4.1 Introduction
115(3)
4.2 Fracture model based on the cohesive beam bonds
118(14)
4.2.1 Fracture criterion
118(2)
4.2.2 Calibration
120(3)
4.2.3 Convergence study
123(2)
4.2.4 Validation
125(7)
4.3 Fracture model based on the virial stress
132(5)
4.3.1 Fracture criterion
132(2)
4.3.2 Calibration
134(1)
4.3.3 Convergence study
134(2)
4.3.4 Validation
136(1)
4.4 Conclusion
137(4)
Conclusion 141(4)
Bibliography 145(16)
Index 161
Mohamed Jebahi, Université de Laval, Canada.

Damien Andre, Arts et Métiers ParisTech, I2M, France.

Inigo Terreros, Arts?et Métiers ParisTech, France.

Ivan Iordanoff, Professor at Arts et Métiers ParisTech, Research at I2M laboratory, France.