Muutke küpsiste eelistusi

E-raamat: Early Life on Earth: Evolution, Diversification, and Interactions [Taylor & Francis e-raamat]

  • Formaat: 332 pages, 3 Tables, black and white; 14 Line drawings, color; 60 Line drawings, black and white; 56 Halftones, color; 70 Halftones, black and white; 70 Illustrations, color; 130 Illustrations, black and white
  • Ilmumisaeg: 08-Mar-2022
  • Kirjastus: CRC Press
  • ISBN-13: 9780367855208
Teised raamatud teemal:
  • Taylor & Francis e-raamat
  • Hind: 267,74 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 382,48 €
  • Säästad 30%
  • Formaat: 332 pages, 3 Tables, black and white; 14 Line drawings, color; 60 Line drawings, black and white; 56 Halftones, color; 70 Halftones, black and white; 70 Illustrations, color; 130 Illustrations, black and white
  • Ilmumisaeg: 08-Mar-2022
  • Kirjastus: CRC Press
  • ISBN-13: 9780367855208
Teised raamatud teemal:
This book comprehensively explores the early evolution of life and the Archean environment. Topics include the differences between prokaryotes and eukaryotes, variations in metabolisms, concepts of ecosystems and biogeochemical cycles (nitrogen, sulfur, phosphorous), Archean geology and environments, and the widely accepted early evolutionary history of life. The text addresses controversies regarding early life and its environment, particularly the unusual microfossil assemblages from the 3.4 Ga Strelley Pool Formation and the 3.0 Ga Farrel Quartzite of Western Australia. Readers will get a fuller picture of the Archean world, and an appreciation of many still unresolved questions.

Key Features











Illustrated with figures visualizing ecosystems, biogeochemical cycles etc which are indispensable for understanding the Archean Earth.





Includes tables arranging key words, definitions, and interpretations.





Documents the Archean environment with photographic evidence and detailed descriptions the rocks, minerals and microfossils.





Summarizes the latest field research.





Details exciting unresolved questions for future study.
Preface xv
Author xxi
Chapter 1 Space, Solar System, and the Earth
1(10)
1.1 Introduction
1(1)
1.2 Elements in the Universe and Their Origins
1(2)
1.3 Evolution of Our Solar System
3(2)
1.4 Evolution of the Earth's Inner Structure
5(1)
1.5 Origins of the Oceans and the Atmosphere
6(5)
Column: Meteorite
8(1)
References
9(2)
Chapter 2 Solid Earth
11(18)
2.1 Introduction
11(1)
2.2 Plate Tectonics, Driving Force of Dynamism of the Earth
12(1)
2.3 Igneous Rocks
13(3)
2.3.1 Classification Scheme
13(1)
2.3.2 Granitic Rocks (Granitoids)
14(1)
2.3.3 Basaltic Rocks
15(1)
2.4 Sedimentary Rocks
16(8)
2.4.1 Volcaniclastic (Pyroclastic) Rocks
16(1)
2.4.2 Terrigenous Clastic Rocks
17(1)
2.4.2.1 Factors Controlling Chemistry and Mineralogy of Terrigenous Clastic Rocks
18(2)
2.4.2.2 Sedimentary Structures of Terrigenous Clastic Rocks and Their Implications
20(1)
2.4.3 Biogenic, Chemical, and Biochemical Sedimentary Rocks
21(1)
2.4.3.1 Biogenic Sedimentary Rocks
21(1)
2.4.3.2 Chemical Sedimentary Rocks
22(2)
2.4.3.3 Biochemical Sedimentary Rocks
24(1)
2.5 Metamorphic Rocks
24(5)
Column: Geochemistry of Igneous Rocks and of Magmatic Processes
26(1)
References
27(2)
Chapter 3 Life on the Earth 1
29(16)
3.1 Introduction
29(1)
3.2 Chemical Evolution and Emergence of Life on the Earth
29(6)
3.2.1 Revisit to Miller's Experiment
30(1)
3.2.2 Delivery of Building Blocks of Life from Space
31(1)
3.2.3 Deep-Sea Hydrothermal Vent Systems and Origin of Life
32(2)
3.2.4 Terrestrial Hydrothermal Systems (Hot Springs): Another Candidates for Birthplace of Life
34(1)
3.3 Classification of Life on the Earth
35(3)
3.4 Diversity in Metabolisms
38(2)
3.4.1 Autotrophy and Heterotrophy
38(1)
3.4.2 Chemistry of Autotrophy
38(1)
3.4.3 Chemistry of Heterotrophy
39(1)
3.5 Ecosystem: Complex System of Life and Environment
40(5)
Column: Discovery of Deep-Sea Hydrothermal Systems
41(1)
References
42(3)
Chapter 4 Life on the Earth 2
45(26)
4.1 Introduction
45(1)
4.2 Carbon
45(7)
4.2.1 Deep Carbon Cycle
46(1)
4.2.2 Modern Surface Carbon Cycle
46(1)
4.2.2.1 Terrestrial Carbon Cycle
46(1)
4.2.2.2 Oceanic Carbon Cycle
47(2)
4.2.2.3 Sediment Carbon Cycle
49(1)
4.2.3 Archean Carbon Cycle
50(2)
4.3 Sulfur
52(4)
4.3.1 Modern Sulfur Cycle
52(1)
4.3.2 Archean Sulfur Cycle
53(3)
4.4 Nitrogen
56(5)
4.4.1 Modern Nitrogen Cycle
56(2)
4.4.2 Archean Nitrogen Cycle
58(3)
4.5 Phosphorous
61(10)
4.5.1 Modern Phosphorous Cycle
61(1)
4.5.2 Archean Phosphorous Cycle
62(2)
Column: Isotope and Isotope Fractionation
64(1)
References
64(7)
Chapter 5 Topics of the Early Precambrian Earth 1
71(32)
5.1 Introduction
71(1)
5.2 Archean Cratons
71(3)
5.2.1 Distributions and Compositions of Archean Cratons
71(3)
5.2.2 Origins of Archean Cratons
74(1)
5.3 Early Continental Growth and Its Implications
74(2)
5.3.1 Models of Continental Growth
74(1)
5.3.2 Plate Tectonics and Continental Growth and Implications
75(1)
5.4 Komatiite Volcanism and Its Significance
76(3)
5.4.1 Komatiite and Its Origin
76(1)
5.4.2 Serpentinization of Komatiite and Its Implications
77(2)
5.5 Large Asteroid Impact and Its Implications
79(3)
5.5.1 Paleo- and Mesoarchean Records of Asteroid Impacts
79(1)
5.5.2 Identification of Large Asteroid Impacts
79(1)
5.5.3 Implications of Large Asteroid Impacts
80(2)
5.6 Archean Seawater Compositions and Products 1: Iron Formations
82(6)
5.6.1 Clues to Archean Seawater Compositions
82(1)
5.6.2 What Are Iron Formations?
82(3)
5.6.3 Iron-Rich and Anoxic Deep Seawaters
85(2)
5.6.4 Origins of Early to Mesoarchean Iron Formations
87(1)
5.7 Archean Seawater Compositions and Products 2: Cherts
88(4)
5.7.1 Silica and Chert
88(1)
5.7.2 Archean Primary Cherts, Indicative of Silica-Rich Ocean
88(1)
5.7.3 Formation Processes of Secondary Cherts
89(1)
5.7.3.1 Hydrothermal Alteration of Oceanic Crusts
89(1)
5.7.3.2 Syndepositional Silicification
90(1)
5.7.3.3 Pervasive Silicification
90(1)
5.7.3.4 Chert Formation and Element Remobilization
90(2)
5.8 How Was the Earth's Atmosphere Oxidized
92(11)
5.8.1 Archean Atmosphere
92(1)
5.8.2 Microbial Consumption and Production of H2 and CH4
92(1)
5.8.3 Hydrogen Escape
93(1)
5.8.4 Archean Ocean Temperature and pH
94(1)
5.8.4.1 Temperature: Hot or Temperate?
94(1)
5.8.4.2 Acidic, Neutral, or Alkaline?
94(1)
Column: Zircon, Windows to the Hadean (4.6--4.0 Ga)
95(1)
References
95(8)
Chapter 6 Topics of the Early Precambrian Earth 2
103(20)
6.1 Introduction
103(1)
6.2 Photosynthesis and Its Evolution
103(5)
6.2.1 Anoxygenic and Oxygenic Photosynthesis
103(2)
6.2.2 Oxygenic Photosynthesis: Energetic and Physiological Perspective
105(1)
6.2.3 Oxygenic Photosynthesis: Nutritional Perspective
106(2)
6.3 Geochemical and Mineralogical Records of the Great Oxidation Event (GOE) and Earlier Oxygenation
108(8)
6.3.1 Occurrrences of Redox-Sensitive Minerals and Related Sediments
108(1)
6.3.1.1 Uraninite, Pyrite, and Siderite
109(1)
6.3.1.2 Red Beds
110(1)
6.3.2 Black Shales and Molybdenum
111(1)
6.3.3 Paleosol, Clue to Oxygen in the Atmosphere and Implications?
111(1)
6.3.3.1 Concept of Paleosol Geochemistry
111(1)
6.3.3.2 Classical Controversy on Paleosol Records
112(1)
6.3.3.3 Recent Controversies on Archean Oxygenic Atmosphere and Isotopic Approach to Paleosol
113(1)
6.3.4 Identification of Sulfur Mass-Independent Isotopic Fractionation (S-MIF)
114(2)
6.4 Sedimentary Records of Oxygenic Photosynthesis: Stromatolite and MISS
116(7)
Column: Oxygen is a Double-Edged Sword
118(1)
References
119(4)
Chapter 7 Biosignatures in Ancient Rocks and Related Issues
123(32)
7.1 Introduction
123(1)
7.2 Organic Matter
123(5)
7.2.1 Kerogen and Its Isotopic Compositions
123(3)
7.2.2 Hydrocarbons and Others -- Archean Oils
126(2)
7.3 Pyrite and Sulfur
128(2)
7.4 Sedimentary Structures and Deposits
130(10)
7.4.1 Microbially-Induced Sedimentary Structures
130(2)
7.4.2 Stromatolites
132(1)
7.4.2.1 What are Stromatolites?
132(2)
7.4.2.2 Skepticisms to Archean Stromatolites
134(1)
7.4.2.3 The Oldest Stromatolites? -- The 3.4 Ga-old Strelley Pool Formation
135(2)
7.4.2.4 The Oldest Stromatolites? -- The 3.5 Ga Dresser Formation
137(3)
7.5 Ichnofossils in Volcanic Rocks
140(2)
7.6 Systematic Approach to Biogenicity Assessment of Cell-Like Structures
142(13)
7.6.1 Geological Context
142(1)
7.6.2 Syngenicity
143(1)
7.6.3 Biological Context: Size and Its Range
144(1)
7.6.4 Biological Context: Shape
145(1)
7.6.5 Biological Context: Occurrence
145(1)
7.6.6 Biological Context: Taphonomy
145(1)
7.6.7 Biological Context: Chemical and Isotopic Compositions
146(1)
Column: Biofilm
146(1)
References
147(8)
Chapter 8 Early (Paleo- to Meso-) Archean Cellularly Preserved Biosignatures
155(24)
8.1 Introduction
155(1)
8.2 Isua Supracrustal Belt, Greenland (Denmark)
155(2)
8.2.1 Geological Background
155(1)
8.2.2 Cellularly Preserved Biosignatures
155(2)
8.3 The Nuvvuagittuq Greenstone Belt, Canada
157(2)
8.3.1 Geological Background
157(1)
8.3.2 Cellularly Preserved Biosignature
158(1)
8.4 Kaapvaal Craton, South Africa
159(7)
8.4.1 The Onverwacht Group
160(1)
8.4.1.1 The Hoogenoeg Formation
160(1)
8.4.1.2 The Kromberg Formation
161(2)
8.4.2 The Fig Tree Group
163(1)
8.4.3 The Moodies Group
164(2)
8.5 Pilbara Craton, Western Australia
166(13)
8.5.1 The Warrawoona Group
166(1)
8.5.1.1 The Dresser Formation
166(2)
8.5.1.2 The Mount Ada Basalt
168(1)
8.5.1.3 The Apex Basalt
168(1)
8.5.1.4 The Panorama Formation
169(1)
8.5.2 The Strelley Pool Formation
170(1)
8.5.3 The Sulfur Springs Group
171(1)
8.5.4 The Gorge Creek Group and Others
172(1)
8.5.4.1 The Farrel Quartzite
172(1)
8.5.4.2 The Dixon Island Formation (Not Official)
172(1)
Column: Rare-Earth Elements and Significance of Shale (PAAS)-Normalization
172(1)
References
173(6)
Chapter 9 Overview of the Pilbara Microstructures 1: The Farrel Quartzite Assemblage
179(26)
9.1 Introduction
179(1)
9.2 Local Geology and Lithostratigraphy of the Goldsworthy Greenstone Belt
179(5)
9.2.1 Local Geology
179(2)
9.2.2 Overview of Lithostratigraphy
181(3)
9.3 Siliciclastic Unit (The Farrel Quartzite)
184(7)
9.3.1 Assignment to the Farrel Quartzite -- Its Story and Remained Problem
184(1)
9.3.2 Lithostratigraphy and Sedimentary Geology
184(3)
9.3.3 Sources of Detrital Materials
187(1)
9.3.4 Detailed Descriptions of CE2
188(1)
9.3.4.1 Lithostratigraphy
188(2)
9.3.4.2 Petrography of Black Chert
190(1)
9.3.4.3 Rare-Earth Elements and Y Geochemistry
190(1)
9.4 The Chert-BIF Unit (The Cleaverville Formation)
191(1)
9.4.1 Lithostratigraphy and Petrography
191(1)
9.4.2 Rare-Earth Elements and Y Geochemistry
192(1)
9.5 Evolution of the Depositional Basin of the Farrel Quartzite -- The Cleaverville Formation
192(5)
9.5.1 Lithostratigraphic Constraints
192(2)
9.5.2 Trace Element Constraints
194(1)
9.5.3 Depositional Environment of the Black Chert in CE2
195(2)
9.6 Fossil-Like Microstructures
197(8)
9.6.1 Spheroids
197(1)
9.6.1.1 Small Spheroids
197(1)
9.6.1.2 Large Spheroids
197(1)
9.6.2 Lenses
197(3)
9.6.3 Films
200(1)
9.6.4 Filaments
200(1)
Column: Evaporite
200(1)
References
201(4)
Chapter 10 Overview of the Pilbara Microstructures 2: The Strelley Pool Formation Assemblage
205(24)
10.1 Introduction
205(1)
10.2 The Panorama Greenstone Belt
206(7)
10.2.1 Local Geology and Lithostratigraphy
206(1)
10.2.2 Panorama Locality 1
207(1)
10.2.2.1 Lithostratigraphy and Petrography
207(1)
10.2.2.2 Fossil-Like Microstructures
207(1)
10.2.3 Panorama Locality 2
208(1)
10.2.3.1 Lithostratigraphy and Petrography
208(2)
10.2.3.2 Fossil-Like Microstructures
210(2)
10.2.4 Depositional Environment
212(1)
10.3 The Warralong Greenstone Belt
213(3)
10.3.1 Local Geology and Lithostratigraphy
213(1)
10.3.2 Petrography of Gray-Black Chert
213(1)
10.3.3 Depositional Environment
213(3)
10.3.4 Fossil-Like Microstructures
216(1)
10.4 The Goldsworthy Greenstone Belt
216(13)
10.4.1 Local Geology and Lithostratigraphy
216(1)
10.4.2 Lithofacies and Petrography of the Uppermost Cherty Unit
216(5)
10.4.3 Depositional Environment of the Uppermost Cherty Unit
221(2)
10.4.4 Fossil-Like Microstructures in the Massive Black Cherts
223(1)
10.4.4.1 Spheroids
223(1)
10.4.4.2 Lenses
223(1)
10.4.4.3 Filaments and Films
223(1)
10.4.5 Minor Occurrences of Fossil-Like Microstructures
224(3)
Column: Siliceous Sinter
227(1)
References
227(2)
Chapter 11 Biogenicity of the Pilbara Microstructures
229(34)
11.1 Introduction
229(1)
11.2 Geologic Context 1: Ages of Rocks
229(1)
11.2.1 The Farrel Quartzite
230(1)
11.2.2 The Strelley Pool Formation
230(1)
11.3 Geologic Context 2: Sedimentary Origin of Host Cherts
230(1)
11.4 Geologic Context 3: Primary Origin of Host Cherts
231(3)
11.5 Syngenicity
234(1)
11.6 Biogenicity
234(20)
11.6.1 Films
236(1)
11.6.2 Filaments
237(2)
11.6.3 Small Spheroids
239(2)
11.6.4 Large Spheroids
241(1)
11.6.4.1 Flexible-Walled Large Spheroids
241(2)
11.6.4.2 Robust and Thick-Walled Large Spherical Spheroid
243(3)
11.6.4.3 Robust-Walled Large Oblate Spheroids
246(1)
11.6.4.4 Robust and Thin-Walled Large Spherical Spheroids: The FQ Assemblage
246(2)
11.6.4.5 Robust and Thin-Walled Large Spherical Spheroids: The SPF Assemblage
248(2)
11.6.5 Lenses
250(4)
11.7 Refuting Objections
254(9)
11.7.1 Are Lenticular Microstructures Volcanic Vesicles or Those Microbially Colonized?
254(1)
11.7.1.1 Descriptions of Wacey's Volcanic Vesicles Mimicking Microfossils
254(1)
11.7.1.2 Lenticular Microfossils Are Not Originated from Volcanic Vesicles
255(1)
11.7.1.3 Dresser Vesicles May Be Lenticular Microfossils
255(1)
11.7.2 Does the Farrel Quartzite Microfossil Assemblage Represent Soil Communities?
256(1)
11.7.2.1 Ambiguity of the Examined Locality
256(1)
11.7.2.2 Ambiguity of the Examined Materials
257(1)
11.7.2.3 Misunderstanding of Previous Studies and Incorrect Citations
257(1)
Column: Acritarchs
258(1)
References
258(5)
Chapter 12 Lifecycle and Mode of Life of the Pilbara Microfossils
263(30)
12.1 Introduction
263(1)
12.2 Reproduction Styles, Life Cycle, and Colony of Modern Microbes
263(3)
12.2.1 Alternative Reproduction Styles to Binary Fissions
263(1)
12.2.2 Morphological Change of Cells
264(1)
12.2.3 Morphology of Colonies
264(2)
12.3 Films
266(1)
12.4 Filaments
267(1)
12.5 Small Spheroids
268(1)
12.6 Large Spheroids
269(1)
12.6.1 Flexible-Walled Large Spheroids
269(1)
12.6.2 Robust and Thin-Walled Large Spherical Spheroids and Robust-walled Large Oblate Spheroid
270(1)
12.7 Lenses
270(23)
12.7.1 Variations in Morphology, Texture, and Colony
271(1)
12.7.1.1 Area, Oblateness, and Flange Width
271(1)
12.7.1.2 Symmetricity vs. Asymmetricity and Distortion
271(2)
12.7.1.3 Flange Fabrics
273(2)
12.7.1.4 Architectures of Colony
275(2)
12.7.2 Lifecycle and Reproduction Styles of Lenticular Microbes
277(1)
12.7.2.1 Simple Life Cycle with Binary Fission
278(1)
12.7.2.2 Multiple Fission with Baeocyte Formation
278(2)
12.7.2.3 Possible Asymmetric Division
280(2)
12.7.3 Morphometries of Lenticular Microfossils
282(1)
12.7.3.1 Methodology
283(1)
12.7.3.2 Results of Morphometric Analyses
283(1)
12.7.3.3 Morphological Variations -- Cell Growth and Taphonomy?
283(2)
12.7.3.4 Environmental Adaptation and Speciation of Lenticular Microbes
285(1)
12.7.4 Planktonic Mode of Life of Lenticular Microbes
286(1)
12.7.4.1 Methodology
286(1)
12.7.4.2 Parameters of Virtual Cells
287(1)
12.7.4.3 Sedimentation Simulation
287(1)
12.7.4.4 Effect of Flange and Flange Thickness
288(1)
12.7.4.5 Effect of Oblateness
288(1)
12.7.4.6 Summary
288(1)
Column: Thiomargarita and Big Bacteria
288(1)
References
289(4)
Chapter 13 Facts and Problems of the Pilbara Microfossils and Related Issues
293(32)
13.1 Introduction
293(1)
13.2 Cyanobacterial Microfossils in the Early Precambrian
293(6)
13.2.1 Records of Described Possible Cyanobacterial Microfossils
293(5)
13.2.2 Criteria for Cyanobacterial Microfossils
298(1)
13.3 Eukaryotic Fossils in the Early Precambrian
299(7)
13.3.1 Records of Eukaryotic Microfossils
299(2)
13.3.2 Criteria for Eukaryotic Microfossils
301(3)
13.3.3 Records of Eukaryotic Macrofossils
304(2)
13.4 Interpretation of the Pilbara Microfossil Assemblages
306(7)
13.4.1 Biological Affinity of Spheroid Microfossils
307(1)
13.4.2 Biological Affinity and Survival Strategy of Lenticular Microbes
308(1)
13.4.2.1 Possibility of Eukaryotic Affinities
308(3)
13.4.2.2 Survival Strategy and Evolutionary Ecology of Lenticular Microbes
311(2)
13.5 Future Directions of the Pilbara Microfossils
313(12)
13.5.1 Reexamination of Vertically to Subvertically Oriented Columnar Giant Crystals
313(1)
13.5.2 Potential of Biomarker Analyses of Microfossils
314(1)
13.5.3 Taxonomy of the Lenticular Microfossils and Life History of Lenticular Microbes
314(1)
Column: Endosymbiotic Theory
315(1)
References
316(9)
Index 325
Kenichiro Sugitani is Professor in the Graduate School of Environmental Studies at Nagoya University, Chikusa, Nagoya. He has published over 70 scientific papers and received the 1995 Geochemical Society of Japan encouragement award for contributions to understanding of geochemistry and origin of ancient siliceous sediments including Archean cherts. He has undertaken fieldwork in the Pilbara Craton and mapped the Goldsworthy greenstone belt, and discovered microfossils from the 3.0 Ga Farrel Quartzite. He is an associate member of Australian Centre for Astrobiology at the University of New South Wales, and serves as regional editor of Astrobiology and a member of editorial advisory board of Geobiology.