Foreword |
|
xi | |
Section I Edge computing software fundamentals |
|
|
1 Edge computing fundamentals |
|
|
3 | (16) |
|
|
4 | (2) |
|
1.1.1 Edge computing models |
|
|
4 | (2) |
|
1.1.2 Defining edge computing S |
|
|
|
1.2 Edge computing characteristics |
|
|
6 | (6) |
|
|
7 | (1) |
|
1.2.2 Capability oriented |
|
|
7 | (1) |
|
1.2.3 Centralized management, distributed compute |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (2) |
|
1.3 Edge computing scenarios |
|
|
12 | (6) |
|
|
12 | (1) |
|
1.3.2 Hardware as a service |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (2) |
|
1.3.5 Edge computing in a pandemic |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (20) |
|
2.1 Edge computing networking |
|
|
19 | (5) |
|
2.1.1 Software-defined network (SDN) |
|
|
19 | (2) |
|
|
21 | (1) |
|
|
22 | (2) |
|
2.1.4 Long-distance networks |
|
|
24 | (1) |
|
|
24 | (7) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (2) |
|
|
28 | (1) |
|
2.2.5 Intelligent devices |
|
|
29 | (2) |
|
|
31 | (3) |
|
|
31 | (1) |
|
2.3.2 Identities and access control |
|
|
32 | (2) |
|
2.3.3 Configurations and policies |
|
|
34 | (1) |
|
2.4 Perspectives and uniformity |
|
|
34 | (3) |
|
|
35 | (1) |
|
2.4.2 Multiple perspectives |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (2) |
Section II Edge computing design patterns |
|
39 | (82) |
|
|
41 | (16) |
|
3.1 Data collection patterns |
|
|
42 | (5) |
|
3.1.1 Data collection through messaging |
|
|
42 | (2) |
|
3.1.2 Data collection through ingress endpoints |
|
|
44 | (1) |
|
3.1.3 Bulk data transportation and in-context data processing |
|
|
45 | (1) |
|
3.1.4 Data pipeline on cloud |
|
|
45 | (2) |
|
|
47 | (4) |
|
3.2.1 Connected consumer devices |
|
|
48 | (1) |
|
3.2.2 Online collaborations |
|
|
49 | (1) |
|
|
50 | (1) |
|
3.2.4 Multi-party computations |
|
|
50 | (1) |
|
3.3 Compute offloading patterns |
|
|
51 | (4) |
|
3.3.1 Multi-level offloading |
|
|
52 | (1) |
|
|
52 | (1) |
|
3.3.3 Adaptive offloading |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
55 | (2) |
|
|
57 | (24) |
|
4.1 Edge acceleration patterns |
|
|
57 | (2) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
4.3 Edge functions pattern |
|
|
60 | (5) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
4.3.4 Function host management at scale |
|
|
63 | (1) |
|
|
64 | (1) |
|
4.4 Cloud compute stack on edge |
|
|
65 | (6) |
|
|
66 | (2) |
|
|
68 | (1) |
|
|
69 | (2) |
|
4.5 Edge native compute stack |
|
|
71 | (4) |
|
4.5.1 Uplifting on-premises datacenters |
|
|
71 | (1) |
|
4.5.2 Template-based compute stack |
|
|
72 | (2) |
|
4.5.3 Multi-access edge computing framework |
|
|
74 | (1) |
|
|
75 | (4) |
|
4.6.1 From automatic to autonomous |
|
|
75 | (1) |
|
|
76 | (1) |
|
4.6.3 Autonomous system architecture |
|
|
77 | (1) |
|
4.6.4 Cloud-assisted robotics |
|
|
78 | (1) |
|
|
79 | (2) |
|
|
81 | (22) |
|
5.1 An anatomy of a Kubernetes cluster |
|
|
82 | (4) |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
5.2 Lightweight Kubernetes clusters |
|
|
86 | (2) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
87 | (1) |
|
5.3 Separating the control plane and the compute plane |
|
|
88 | (2) |
|
|
88 | (1) |
|
|
89 | (1) |
|
5.4 Custom kubelet implementations |
|
|
90 | (3) |
|
|
90 | (2) |
|
|
92 | (1) |
|
5.5 Lightweight container runtimes |
|
|
93 | (4) |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
95 | (1) |
|
5.5.5 k3 container solution |
|
|
95 | (1) |
|
5.5.6 Other noticeable container runtimes |
|
|
96 | (1) |
|
|
97 | (3) |
|
5.6.1 Federation topologies |
|
|
97 | (2) |
|
|
99 | (1) |
|
5.7 Securing Kubernetes clusters on edge |
|
|
100 | (2) |
|
5.7.1 Container isolation |
|
|
100 | (1) |
|
|
101 | (1) |
|
|
102 | (1) |
|
5.7.4 Security monitoring |
|
|
102 | (1) |
|
|
102 | (1) |
|
|
103 | (18) |
|
6.1 Edge native applications |
|
|
103 | (8) |
|
6.1.1 Autonomous bootstrapping |
|
|
103 | (1) |
|
6.1.2 Adaptive to environmental changes |
|
|
104 | (1) |
|
6.1.3 Edge high availability |
|
|
105 | (2) |
|
6.1.4 End-to-end security |
|
|
107 | (3) |
|
6.1.5 Manageability at scale |
|
|
110 | (1) |
|
6.2 A model for designing edge native applications |
|
|
111 | (4) |
|
|
112 | (2) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
115 | (5) |
|
|
116 | (1) |
|
|
116 | (1) |
|
6.3.3 Edge high availability |
|
|
117 | (2) |
|
6.3.4 End-to-end security practices with the OSMP model |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
Section III Capability-oriented architecture |
|
121 | (40) |
|
7 Introduction to capability-oriented architecture |
|
|
123 | (20) |
|
|
123 | (6) |
|
7.1.1 Location transparency |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
126 | (1) |
|
7.1.4 Proxy bootstrapper, capability set, capability profile and acquisition agent |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (3) |
|
7.2.1 Interpreting user intention |
|
|
130 | (2) |
|
7.2.2 Intention annotations |
|
|
132 | (1) |
|
7.3 Semantic service discovery |
|
|
132 | (4) |
|
7.3.1 Semantic service discovery process |
|
|
133 | (1) |
|
7.3.2 Capability endpoint |
|
|
134 | (1) |
|
7.3.3 Classic service discovery and description |
|
|
134 | (1) |
|
|
135 | (1) |
|
7.3.5 Client-initiated auctions |
|
|
135 | (1) |
|
|
136 | (4) |
|
7.4.1 Skynet-style computing |
|
|
136 | (2) |
|
|
138 | (2) |
|
7.4.3 Better computing for everyone |
|
|
140 | (1) |
|
|
140 | (2) |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
142 | (1) |
|
|
143 | (18) |
|
8.1 A phone without applications |
|
|
143 | (2) |
|
8.2 Intelligent applications |
|
|
145 | (2) |
|
8.3 Zero-touch device provisioning |
|
|
147 | (3) |
|
8.3.1 Device provisioning process |
|
|
148 | (1) |
|
8.3.2 Design a generic solution |
|
|
149 | (1) |
|
8.4 Collaborative computing |
|
|
150 | (2) |
|
8.5 Context-aware computing |
|
|
152 | (4) |
|
8.5.1 Device context descriptor |
|
|
152 | (1) |
|
8.5.2 Adapt to network conditions |
|
|
153 | (1) |
|
8.5.3 Real-world contexts |
|
|
154 | (2) |
|
|
156 | (2) |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
158 | (2) |
|
|
160 | (1) |
|
|
160 | (1) |
Index |
|
161 | |