Muutke küpsiste eelistusi

E-raamat: Electronic Structure of Materials: Challenges and Developments [Taylor & Francis e-raamat]

  • Formaat: 246 pages, 27 Tables, black and white
  • Ilmumisaeg: 01-Apr-2019
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9780429242878
  • Taylor & Francis e-raamat
  • Hind: 175,41 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 250,59 €
  • Säästad 30%
  • Formaat: 246 pages, 27 Tables, black and white
  • Ilmumisaeg: 01-Apr-2019
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9780429242878
This book is a short survey of magnetochemistry as a promising method for revealing the electronic structure of inorganic substances, particularly solid oxide materials. It is supported by five chapters that describe materials with various structures and applications, showing how the method of magnetic dilution with the aid of other physical methods (electron spin resonance, magnetization, Raman and Mössbauer spectroscopy, and electrical conductivity), accompanied by thorough structural and quantum mechanical studies, may be used for describing the states of atoms and interatomic interactions in multicomponent oxide systems. The book will serve as a guide for researchers in the field of various oxide materials, since it shows the roots for selecting the best structures and qualitative and quantitative compositions of oxide materials on the basis of the knowledge about their electronic structure. It is devoted to some of the most popular structures of multicomponent oxides among modern materialsperovskites and pyrochloresgiving a unified approach to their chemical structure.
Preface ix
Introduction 1(4)
1 Fundamentals of Magnetochemistry
5(38)
Natalia V. Chezhina
Dmitry A. Korolev
1.1 Method of Static Magnetic Susceptibility in Coordination Chemistry
5(13)
1.2 Exchange Effect and Spin-Spin Interactions
18(8)
1.3 Magnetic Phenomena in Solids
26(4)
1.4 Magnetic Dilution Method
30(13)
2 Phase Composition and Magnetic Characteristics of Solid Solutions and Complex Oxides Based on Scandium Molybdate Sc2-2xGd2xMo3O12 (0 ≤ × ≤ 1)
43(16)
Dmitry A. Korolev
Mariia D. Sapova
2.1 Introduction
43(2)
2.2 Synthesis, Structural and X-Ray Data
45(6)
2.3 Raman Spectroscopy
51(4)
2.4 Magnetic Susceptibility Measurements and Their Analysis
55(4)
3 Problems of Electron Structure of Colossal Magnetoresistors
59(38)
Anna V. Fedorova
Natalia V. Chezhina
3.1 Introduction
59(5)
3.2 State of Manganese Atoms and Exchange Interactions in the Solid Solutions Based on Lanthanum Aluminate
64(33)
3.2.1 The xLa0.33A0.67MnO3-(1-x)LaAlO3 (A = Ca, Sr, Ba) Solid Solutions
64(3)
3.2.2 The xLa0.67(CaySr1-y)0.33MnO3-(1-x) LaAlO3 (y = 0.3; 0.5; 0.7) Solid Solutions
67(4)
3.2.3 The x(La1.zY2)0.67Ca0.33MnO3-(1-x)La1-z YzAlO3 (z = 0.1; 0.2) Solid Solutions
71(9)
3.2.4 The x(La1-zY2)0.67Sr0.33MnO3-(1-x)La1-z YzAlO3 (z = 0.1; 0.2) Solid Solutions
80(17)
4 Influence of the Nature and Concentration of Dia-and Paramagnetic Elements on Electron Structure and Electrophysical Properties of Doped Lanthanum Gallate
97(70)
Dmitry A. Korolev
Natalia V. Chezhina
4.1 Introduction
97(5)
4.2 Synthesis and Material Characterization
102(2)
4.2.1 Synthesis
102(1)
4.2.2 Methods of Material Characterization
103(1)
4.3 Lanthanum Gallate Doped with Transition Element and Strontium
104(10)
4.3.1 Lanthanum Gallate Doped with Transition Element and Strontium in Ratio M:Sr = 5:1
104(1)
4.3.1.1 Chromium-containing systems
104(5)
4.3.1.2 Manganese-containing systems
109(2)
4.3.1.3 Cobalt-containing systems
111(1)
4.3.1.4 Nickel-containing systems
112(2)
4.4 Conductivity of Lanthanum Gallate Doped with Transition Element and Strontium in Ratio M:Sr = 5:1
114(4)
4.5 The Impact of the Increased Fraction of Strontium and Introduction of Magnesium on Electron Structure and Electrophysical Properties of Doped Lanthanum Gallate
118(31)
4.5.1 Chromium-Containing Systems
118(13)
4.5.2 Nickel-Containing Systems
131(1)
4.5.2.1 La1.0.5xSro.5xNixGa1.x03-δ, LaNixGa1-1.2xMg0.2xO3-δ and LaNixGa1-1.5xMg0.5xO3-δ systems
131(6)
4.5.2.2 La1-0.2xSr0.2xNixMg0.2XGa1-1.2xO3-δ system
137(1)
4.5.3 LaCOxMg0.2xGa1-1.2xO3-δ and LaCOxMg0.5x Ga1-1.5x3-δ Systems
138(1)
4.5.3.1 X-ray diffraction and phase composition
138(5)
4.5.3.2 Magnetic features
143(6)
4.6 Conductivity in the Systems with Magnesium and an Increased Content of Strontium
149(3)
4.6.1 Chromium-Containing Systems
149(1)
4.6.2 Nickel-Containing Systems
149(3)
4.7 Lanthanum Gallate Doped with Chromium and Calcium or Barium
152(5)
4.8 Conclusion
157(10)
5 Magnetic Behavior of Multicomponent Bismuth Niobates and Bismuth Titanates, with Pyrochlore and Layered Perovskite-Type Structures
167(64)
Irina V. Piir
Mariya S. Koroleva
Dmitry A. Korolev
Natalia V. Chezhina
5.1 Introduction
167(2)
5.2 Magnetic Behavior of the Doped Titanates and Substituted Niobates of Bismuth with Layered Perovskite Structure
169(19)
5.2.1 Structure of Layered Doped Bismuth Titanates and Bismuth Niobates
169(3)
5.2.2 Magnetic Properties of Doped Bismuth Niobates and Titanates
172(2)
5.2.3 Magnetic Behavior of Chromium Containing Bismuth Titanates
174(5)
5.2.4 Magnetic Properties of Iron-Containing Bismuth Titanates and Niobates
179(4)
5.2.5 Magnetic Properties of Manganese Containing Bismuth Titanates and Niobates
183(5)
5.3 Magnetic Behavior of Doped Bismuth Titanates and Niobates with Pyrochlore-Type Structure
188(31)
5.3.1 Pyrochlore Structure Type and Special Features of Bismuth-Containing Pyrochlores
188(7)
5.3.2 Magnetic Properties of Chromium, Iron, Manganese Containing Bismuth Niobates and Titanates with Pyrochlore-Type Structure
195(1)
5.3.2.1 Magnetic properties of Bi16 CrxTi2O7-δ and Bi1.6Mg0.8-xCrx Nb1.6O7-δ
196(6)
5.3.2.2 Magnetic properties of iron-containing bismuth titanates and niobates
202(6)
5.3.2.3 Magnetic properties of manganese-containing bismuth titanates and niobates
208(8)
5.3.2.4 Magnetic properties of diluted manganese-containing bismuth niobates
216(3)
5.4 Conclusions
219(12)
Index 231
Natalia Chezhina, Dmitry Korolev