Preface |
|
xiii | |
Acknowledgements |
|
xv | |
About the Companion Website |
|
xvii | |
1 Introduction |
|
1 | (8) |
|
1.1 The purpose of the book |
|
|
1 | (3) |
|
1.1.1 What this book adds |
|
|
3 | (1) |
|
1.1.2 Scales of analysis and alternative definitions |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.3 Case studies and examples |
|
|
5 | (1) |
|
1.4 Why is spatial scale important? |
|
|
5 | (1) |
|
1.5 Structure of the book |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (2) |
2 Scale in Spatial Data Analysis: Key Concepts |
|
9 | (20) |
|
2.1 Definitions of spatial scale |
|
|
9 | (2) |
|
2.2 Spatial autocorrelation and spatial dependence |
|
|
11 | (2) |
|
|
13 | (1) |
|
2.4 Scale and data models |
|
|
14 | (1) |
|
2.5 Spatial scales of inquiry |
|
|
14 | (1) |
|
2.6 Scale and spatial data analysis |
|
|
14 | (1) |
|
2.7 Scale and neighbourhoods |
|
|
15 | (1) |
|
|
16 | (7) |
|
2.9 Scale, spatial data analysis and physical processes |
|
|
23 | (2) |
|
2.10 Scale, spatial data analysis and social processes |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
26 | (3) |
3 The Modifiable Areal Unit Problem |
|
29 | (16) |
|
|
29 | (1) |
|
3.2 Scale and zonation effects |
|
|
29 | (3) |
|
3.3 The ecological fallacy |
|
|
32 | (2) |
|
3.4 The MAUP and univariate statistics |
|
|
34 | (4) |
|
3.4.1 Case study: segregation in Northern Ireland |
|
|
35 | (3) |
|
3.4.2 Spatial approaches to segregation |
|
|
38 | (1) |
|
3.5 Geographical weighting and the MAUP |
|
|
38 | (1) |
|
3.6 The MAUP and multivariate statistics |
|
|
39 | (2) |
|
3.6.1 Case study: population variables in Northern Ireland |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
42 | (3) |
4 Measuring Spatial Structure |
|
45 | (58) |
|
|
45 | (1) |
|
4.2 Measures of spatial autocorrelation |
|
|
45 | (8) |
|
|
47 | (1) |
|
4.2.2 Spatial autocorrelation and kernel. size |
|
|
47 | (3) |
|
4.2.3 Spatial autocorrelation and lags |
|
|
50 | (1) |
|
|
50 | (1) |
|
4.2.5 Global and local I and spatial scale |
|
|
51 | (2) |
|
4.3 Geostatistics and characterising spatial structure |
|
|
53 | (4) |
|
4.3.1 The theory of regionalised variables |
|
|
54 | (3) |
|
|
57 | (2) |
|
4.4.1 Bias in variogram estimation |
|
|
59 | (1) |
|
4.5 The covariance function and correlogram |
|
|
59 | (1) |
|
4.6 Alternative measures of spatial structure |
|
|
60 | (3) |
|
4.7 Measuring dependence between variables |
|
|
63 | (1) |
|
|
64 | (1) |
|
4.9 Variogram clouds and h-scatterplots |
|
|
64 | (1) |
|
|
65 | (3) |
|
4.11 Fitting variogram models |
|
|
68 | (2) |
|
4.12 Variogram case study |
|
|
70 | (4) |
|
4.13 Anisotropy and variograms |
|
|
74 | (3) |
|
4.13.1 Variogram surfaces |
|
|
74 | (1) |
|
4.13.2 Geometric and zonal anisotropy |
|
|
75 | (2) |
|
4.14 Variograms and non-stationarity |
|
|
77 | (5) |
|
4.14.1 Variograms and long-range trends |
|
|
77 | (2) |
|
4.14.2 Variogram non-stationarity |
|
|
79 | (3) |
|
4.15 Space-time variograms |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
83 | (1) |
|
4.18 Point pattern analysis |
|
|
84 | (13) |
|
4.18.1 Spatial dependence and point patterns |
|
|
85 | (6) |
|
|
91 | (1) |
|
|
92 | (5) |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
97 | (6) |
5 Scale and Multivariate Data |
|
103 | (32) |
|
5.1 Regression frameworks |
|
|
104 | (1) |
|
5.2 Spatial scale and regression |
|
|
104 | (1) |
|
|
105 | (1) |
|
|
105 | (1) |
|
5.5 Regression and spatial data |
|
|
106 | (5) |
|
5.5.1 Generalised least squares |
|
|
106 | (1) |
|
5.5.2 Spatial autoregressive models |
|
|
107 | (2) |
|
5.5.3 Spatially lagged dependent variable models and spatial error models case study |
|
|
109 | (2) |
|
5.6 Local regression and spatial scale |
|
|
111 | (8) |
|
5.6.1 Spatial expansion method |
|
|
111 | (1) |
|
5.6.2 Geographically weighted regression |
|
|
112 | (3) |
|
|
115 | (1) |
|
5.6.4 GWR case study: fixed bandwidths |
|
|
115 | (1) |
|
5.6.5 GWR case study: variable bandwidths |
|
|
116 | (2) |
|
5.6.6 Bayesian spatially varying coefficient process models |
|
|
118 | (1) |
|
|
119 | (10) |
|
|
125 | (4) |
|
5.8 Spatial structure of multiple variables |
|
|
129 | (1) |
|
5.9 Multivariate analysis and spatial scale |
|
|
130 | (1) |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
131 | (4) |
6 Fractal Analysis |
|
135 | (24) |
|
|
135 | (3) |
|
6.2 Measuring fractal dimension |
|
|
138 | (4) |
|
6.2.1 Walking-divider method |
|
|
139 | (1) |
|
6.2.2 Box-counting method |
|
|
140 | (2) |
|
|
142 | (1) |
|
6.3 Fractals and spatial structure |
|
|
142 | (10) |
|
6.3.1 Case study: fractal D of land surfaces |
|
|
143 | (3) |
|
6.3.2 Case study: local fractal D |
|
|
146 | (3) |
|
6.3.3 Fractals and topographic form |
|
|
149 | (3) |
|
6.4 Other applications of fractal analysis |
|
|
152 | (3) |
|
6.4.1 Fractals and remotely sensed imagery |
|
|
152 | (1) |
|
6.4.2 Fractals and urban form |
|
|
153 | (2) |
|
6.5 How useful is the fractal model in geography? |
|
|
155 | (1) |
|
|
155 | (1) |
|
|
155 | (1) |
|
|
155 | (4) |
7 Scale and Gridded Data: Fourier and Wavelet Transforms |
|
159 | (24) |
|
|
159 | (1) |
|
|
160 | (8) |
|
7.2.1 Continuous Fourier transform |
|
|
160 | (1) |
|
7.2.2 Discrete Fourier transform |
|
|
161 | (2) |
|
7.2.3 Fast Fourier transform |
|
|
163 | (1) |
|
|
163 | (2) |
|
7.2.5 Spectral analysis and the covariance function |
|
|
165 | (2) |
|
7.2.6 Spectral analysis case study |
|
|
167 | (1) |
|
|
168 | (12) |
|
7.3.1 Continuous wavelet transforms |
|
|
169 | (1) |
|
7.3.2 Discrete wavelet transforms |
|
|
170 | (1) |
|
7.3.3 The Haar basis functions |
|
|
171 | (1) |
|
7.3.4 Other basis functions |
|
|
172 | (1) |
|
7.3.5 Fast wavelet transform |
|
|
173 | (1) |
|
7.3.6 Two-dimensional wavelet transforms |
|
|
174 | (6) |
|
7.4 Wavelet analysis applications and other issues |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
181 | (2) |
8 Areal Interpolation |
|
183 | (18) |
|
|
183 | (1) |
|
|
184 | (2) |
|
8.3 Using additional data |
|
|
186 | (7) |
|
8.3.1 Types of secondary data sources for mapping populations |
|
|
192 | (1) |
|
|
193 | (3) |
|
8.4.1 Population surface case study |
|
|
195 | (1) |
|
8.5 Other approaches to changing support |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (3) |
9 Geostatistical Interpolation and Change of Support |
|
201 | (40) |
|
|
201 | (1) |
|
|
201 | (4) |
|
9.2.1 Regularisation with an irregular support |
|
|
204 | (1) |
|
9.3 Variogram deconvolution |
|
|
205 | (5) |
|
9.3.1 Variogram deconvolution for irregular supports |
|
|
206 | (2) |
|
9.3.2 Variography and change of support |
|
|
208 | (2) |
|
|
210 | (16) |
|
|
210 | (2) |
|
|
212 | (1) |
|
|
213 | (2) |
|
9.4.4 Factorial kriging case study |
|
|
215 | (1) |
|
9.4.5 Kriging in the presence of a trend |
|
|
215 | (7) |
|
|
222 | (1) |
|
9.4.7 Kriging with an external drift and other techniques |
|
|
222 | (1) |
|
9.4.8 Interpreting the kriging variance |
|
|
223 | (1) |
|
|
223 | (1) |
|
9.4.10 Conditional simulation |
|
|
224 | (1) |
|
9.4.11 Comparison of kriging approaches |
|
|
224 | (2) |
|
9.5 Kriging and change of support |
|
|
226 | (5) |
|
|
226 | (1) |
|
9.5.2 Area-to-point kriging |
|
|
227 | (2) |
|
|
229 | (2) |
|
9.6 Assessing uncertainty and optimal sampling design |
|
|
231 | (5) |
|
|
231 | (1) |
|
9.6.2 Assessing optimal sampling design |
|
|
232 | (3) |
|
9.6.3 Optimal spatial resolution |
|
|
235 | (1) |
|
9.6.4 Other approaches to optimal sampling design |
|
|
236 | (1) |
|
|
236 | (1) |
|
|
236 | (1) |
|
|
236 | (5) |
10 Summary and Conclusions |
|
241 | (6) |
|
10.1 Overview of key concepts and methods |
|
|
241 | (2) |
|
10.2 Problems and future directions |
|
|
243 | (2) |
|
|
245 | (1) |
|
|
245 | (2) |
Index |
|
247 | |