Preface to the second edition |
|
xi | |
Preface to the first edition |
|
xiii | |
Preface |
|
xv | |
About the companion website |
|
xvii | |
|
1 Introduction To The Finite Element Method |
|
|
1 | (50) |
|
1.1 An introductory problem |
|
|
3 | (3) |
|
1.2 Generalized formulation |
|
|
6 | (6) |
|
|
6 | (5) |
|
1.2.2 The principle of minimum potential energy |
|
|
11 | (1) |
|
1.3 Approximate solutions |
|
|
12 | (14) |
|
1.3.1 The standard polynomial space |
|
|
13 | (3) |
|
1.3.2 Finite element spaces in one dimension |
|
|
16 | (1) |
|
1.3.3 Computation of the coefficient matrices |
|
|
17 | (3) |
|
1.3.4 Computation of the right hand side vector |
|
|
20 | (1) |
|
|
21 | (3) |
|
|
24 | (1) |
|
1.3.7 Enforcement of Dirichlet boundary conditions |
|
|
24 | (2) |
|
1.4 Post-solution operations |
|
|
26 | (4) |
|
1.4.1 Computation of the quantities of interest |
|
|
26 | (4) |
|
1.5 Estimation of error in energy norm |
|
|
30 | (8) |
|
|
30 | (1) |
|
1.5.2 A priori estimation of the rate of convergence |
|
|
31 | (1) |
|
1.5.3 A posteriori estimation of error |
|
|
32 | (4) |
|
1.5.4 Error in the extracted QoI |
|
|
36 | (2) |
|
1.6 The choice of discretization in ID |
|
|
38 | (4) |
|
1.6.1 The exact solution lies in Hk(I), k -- 1 > p |
|
|
38 | (1) |
|
1.6.2 The exact solution lies in Hk(I), k -- 1 < p |
|
|
39 | (3) |
|
|
42 | (4) |
|
1.8 Other finite element methods |
|
|
46 | (5) |
|
|
47 | (1) |
|
|
48 | (3) |
|
2 Boundary Value Problems |
|
|
51 | (40) |
|
|
51 | (2) |
|
2.2 The scalar elliptic boundary value problem |
|
|
53 | (2) |
|
2.2.1 Generalized formulation |
|
|
53 | (2) |
|
|
55 | (1) |
|
|
55 | (12) |
|
2.3.1 The differential equation |
|
|
57 | (1) |
|
2.3.2 Boundary and initial conditions |
|
|
58 | (1) |
|
2.3.3 Boundary conditions of convenience |
|
|
59 | (2) |
|
2.3.4 Dimensional reduction |
|
|
61 | (6) |
|
2.4 Equations of linear elasticity - strong form |
|
|
67 | (11) |
|
2.4.1 The Navier equations |
|
|
70 | (1) |
|
2.4.2 Boundary and initial conditions |
|
|
71 | (1) |
|
2.4.3 Symmetry, antisymmetry and periodicity |
|
|
72 | (1) |
|
2.4.4 Dimensional reduction in linear elasticity |
|
|
73 | (3) |
|
2.4.5 Incompressible elastic materials |
|
|
76 | (2) |
|
|
78 | (1) |
|
2.6 Generalized formulation of problems of linear elasticity |
|
|
78 | (9) |
|
2.6.1 The principle of minimum potential energy |
|
|
80 | (2) |
|
2.6.2 The RMS measure of stress |
|
|
82 | (1) |
|
2.6.3 The principle of virtual work |
|
|
83 | (1) |
|
|
84 | (3) |
|
|
87 | (2) |
|
|
89 | (2) |
|
|
91 | (28) |
|
3.1 Standard elements in two dimensions |
|
|
91 | (1) |
|
3.2 Standard polynomial spaces |
|
|
91 | (2) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
93 | (4) |
|
3.3.1 Lagrange shape functions |
|
|
93 | (2) |
|
3.3.2 Hierarchic shape functions |
|
|
95 | (2) |
|
3.4 Mapping functions in two dimensions |
|
|
97 | (5) |
|
3.4.1 Isoparametric mapping |
|
|
97 | (2) |
|
3.4.2 Mapping by the blending function method |
|
|
99 | (2) |
|
3.4.3 Mapping algorithms for high order elements |
|
|
101 | (1) |
|
3.5 Finite element spaces in two dimensions |
|
|
102 | (1) |
|
3.6 Essential boundary conditions |
|
|
103 | (1) |
|
3.7 Elements in three dimensions |
|
|
103 | (3) |
|
3.7.1 Mapping functions in three dimensions |
|
|
105 | (1) |
|
3.8 Integration and differentiation |
|
|
106 | (3) |
|
3.8.1 Volume and area integrals |
|
|
106 | (1) |
|
3.8.2 Surface and contour integrals |
|
|
107 | (1) |
|
|
108 | (1) |
|
3.9 Stiffness matrices and load vectors |
|
|
109 | (2) |
|
|
109 | (1) |
|
|
110 | (1) |
|
3.10 Post-solution operations |
|
|
111 | (1) |
|
3.11 Computation of the solution and its first derivatives |
|
|
111 | (2) |
|
|
113 | (4) |
|
3.12.1 Nodal forces in the h-version |
|
|
113 | (2) |
|
3.12.2 Nodal forces in the p-version |
|
|
115 | (2) |
|
3.12.3 Nodal forces and stress resultants |
|
|
117 | (1) |
|
|
117 | (2) |
|
4 Pre-And Postprocessing Procedures And Verification |
|
|
119 | (36) |
|
4.1 Regularity in two and three dimensions |
|
|
119 | (1) |
|
4.2 The Laplace equation in two dimensions |
|
|
120 | (13) |
|
4.2.1 2D model problem, uEX Hk(Ω), k -- 1 > p |
|
|
121 | (2) |
|
4.2.2 2D model problem, uEX Hk(Ω), k -- 1 < p |
|
|
123 | (3) |
|
4.2.3 Computation of the flux vector in a given point |
|
|
126 | (2) |
|
4.2.4 Computation of the flux intensity factors |
|
|
128 | (3) |
|
4.2.5 Material interfaces |
|
|
131 | (2) |
|
4.3 The Laplace equation in three dimensions |
|
|
133 | (4) |
|
|
137 | (6) |
|
4.4.1 Problems of elasticity on an L-shaped domain |
|
|
137 | (2) |
|
4.4.2 Crack tip singularities in 2D |
|
|
139 | (3) |
|
4.4.3 Forcing functions acting on boundaries |
|
|
142 | (1) |
|
|
143 | (5) |
|
4.6 Solution verification |
|
|
148 | (7) |
|
|
155 | (32) |
|
5.1 Development of a very useful mathematical model |
|
|
156 | (3) |
|
5.1.1 The Bernoulli-Euler beam model |
|
|
156 | (2) |
|
5.1.2 Historical notes on the Bernoulli-Euler beam model |
|
|
158 | (1) |
|
5.2 Finite element modeling and numerical simulation |
|
|
159 | (28) |
|
5.2.1 Numerical simulation |
|
|
159 | (1) |
|
5.2.2 Finite element modeling |
|
|
160 | (3) |
|
5.2.3 Calibration versus tuning |
|
|
163 | (1) |
|
5.2.4 Simulation governance |
|
|
164 | (1) |
|
5.2.5 Milestones in numerical simulation |
|
|
165 | (2) |
|
5.2.6 Example: The Girkmann problem |
|
|
167 | (3) |
|
5.2.7 Example: Fastened structural connection |
|
|
170 | (6) |
|
5.2.8 Finite element model |
|
|
176 | (4) |
|
5.2.9 Example: Coil spring with displacement boundary conditions |
|
|
180 | (4) |
|
5.2.10 Example: Coil spring segment |
|
|
184 | (3) |
|
6 Calibration, Validation And Ranking |
|
|
187 | (36) |
|
|
187 | (4) |
|
|
188 | (1) |
|
|
189 | (1) |
|
6.1.3 The effect of notches |
|
|
190 | (1) |
|
6.1.4 Formulation of predictors of fatigue life |
|
|
190 | (1) |
|
6.2 The predictors of Peterson and Neuber |
|
|
191 | (11) |
|
6.2.1 The effect of notches -- calibration |
|
|
193 | (2) |
|
6.2.2 The effect of notches -- validation |
|
|
195 | (2) |
|
6.2.3 Updated calibration |
|
|
197 | (2) |
|
|
199 | (2) |
|
|
201 | (1) |
|
|
202 | (3) |
|
6.3.1 Calibration of β(V, α) |
|
|
203 | (1) |
|
|
204 | (1) |
|
6.3.3 Comparison of Gα with Peterson's revised predictor |
|
|
205 | (1) |
|
|
205 | (13) |
|
6.4.1 Axial, torsional and combined in-phase loading |
|
|
206 | (2) |
|
6.4.2 The domain of calibration |
|
|
208 | (2) |
|
6.4.3 Out-of-phase biaxial loading |
|
|
210 | (8) |
|
6.5 Management of model development |
|
|
218 | (5) |
|
6.5.1 Obstacles to progress |
|
|
220 | (3) |
|
7 Beams, Plates And Shells |
|
|
223 | (32) |
|
|
223 | (11) |
|
7.1.1 The Timoshenko beam |
|
|
225 | (4) |
|
7.1.2 The Bernoulli-Euler beam |
|
|
229 | (5) |
|
|
234 | (13) |
|
7.2.1 The Reissner-Mindlin plate |
|
|
236 | (4) |
|
7.2.2 The Kirchhoff plate |
|
|
240 | (3) |
|
7.2.3 The transverse variation of displacements |
|
|
243 | (4) |
|
|
247 | (7) |
|
7.3.1 Hierarchic thin solid models |
|
|
249 | (5) |
|
|
254 | (1) |
|
8 Aspects Of Multiscale Models |
|
|
255 | (10) |
|
8.1 Unidirectional fiber-reinforced laminae |
|
|
255 | (9) |
|
8.1.1 Determination of material constants |
|
|
257 | (1) |
|
8.1.2 The coefficients of thermal expansion |
|
|
258 | (1) |
|
|
258 | (3) |
|
|
261 | (1) |
|
8.1.5 Prediction of failure in composite materials |
|
|
262 | (1) |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
265 | (86) |
|
|
265 | (1) |
|
|
265 | (1) |
|
9.1.2 Nonlinear material properties |
|
|
266 | (1) |
|
|
266 | (21) |
|
9.2.1 Large strain and rotation |
|
|
266 | (4) |
|
9.2.2 Structural stability and stress stiffening |
|
|
270 | (5) |
|
|
275 | (6) |
|
|
281 | (6) |
|
|
287 | (2) |
|
|
289 | (1) |
|
A.1 Normed linear spaces, linear functionals and bilinear forms |
|
|
289 | (2) |
|
A.1.1 Normed linear spaces |
|
|
290 | (1) |
|
|
290 | (1) |
|
|
290 | (1) |
|
A.2 Convergence in the space X |
|
|
291 | (2) |
|
A.2.1 The space of continuous functions |
|
|
291 | (1) |
|
|
291 | (1) |
|
A.2.3 Sobolev space of order 1 |
|
|
291 | (1) |
|
A.2.4 Sobolev spaces of fractional index |
|
|
292 | (1) |
|
A.3 The Schwarz inequality for integrals |
|
|
293 | (2) |
|
Appendix B Proof of h-convergence |
|
|
295 | (2) |
|
Appendix C Convergence in 3D: Empirical results |
|
|
297 | (4) |
|
Appendix D Legendre polynomials |
|
|
301 | (1) |
|
D.1 Shape functions based on Legendre polynomials |
|
|
302 | (1) |
|
Appendix E Numerical quadrature |
|
|
303 | (1) |
|
|
303 | (1) |
|
E.2 Gauss-Lobatto quadrature |
|
|
304 | (3) |
|
Appendix F Polynomial mapping functions |
|
|
307 | (1) |
|
F.1 Interpolation on surfaces |
|
|
308 | (3) |
|
F.1.1 Interpolation on the standard quadrilateral element |
|
|
309 | (1) |
|
F.1.2 Interpolation on the standard triangle |
|
|
309 | (2) |
|
Appendix G Corner singularities in two-dimensional elasticity |
|
|
311 | (1) |
|
G.1 The Airy stress function |
|
|
311 | (1) |
|
|
312 | (7) |
|
G.2.1 Symmetric eigenfunctions |
|
|
313 | (2) |
|
G.2.2 Antisymmetric eigenfunctions |
|
|
315 | (1) |
|
G.2.3 The L-shaped domain |
|
|
315 | (2) |
|
|
317 | (2) |
|
Appendix H Computation of stress intensity factors |
|
|
319 | (1) |
|
H.1 Singularities at crack tips |
|
|
319 | (1) |
|
H.2 The contour integral method |
|
|
320 | (1) |
|
H.3 The energy release rate |
|
|
321 | (4) |
|
H.3.1 Symmetric (Mode I) loading |
|
|
322 | (1) |
|
H.3.2 Antisymmetric (Mode II) loading |
|
|
323 | (1) |
|
H.3.3 Combined (Mode I and Mode II) loading |
|
|
323 | (1) |
|
H.3.4 Computation by the stiffness derivative method |
|
|
323 | (2) |
|
Appendix I Fundamentals of data analysis |
|
|
325 | (1) |
|
I.1 Statistical foundations |
|
|
325 | (1) |
|
|
326 | (2) |
|
|
328 | (7) |
|
|
335 | (1) |
|
|
335 | (2) |
|
Appendix J Estimation of fastener forces in structural connections |
|
|
337 | (4) |
|
Appendix K Useful algorithms in solid mechanics |
|
|
341 | (1) |
|
|
341 | (1) |
|
K.2 Transformation of vectors |
|
|
342 | (1) |
|
K.3 Transformation of stresses |
|
|
343 | (1) |
|
|
344 | (1) |
|
|
344 | (1) |
|
K.6 Statically equivalent forces and moments |
|
|
345 | (6) |
|
K.6.1 Technical formulas for stress |
|
|
348 | (3) |
Bibliography |
|
351 | (6) |
Index |
|
357 | |