Muutke küpsiste eelistusi

E-raamat: Fundamental Concepts of Molecular Spectroscopy [Taylor & Francis e-raamat]

(Senior Professor of Chemistry, University of Hyderabad, Hyderabad, Telangana, India, 500046)
  • Formaat: 308 pages, 155 Line drawings, color; 164 Line drawings, black and white; 319 Illustrations, black and white
  • Ilmumisaeg: 20-Mar-2023
  • Kirjastus: CRC Press
  • ISBN-13: 9781003293064
  • Taylor & Francis e-raamat
  • Hind: 166,18 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 237,40 €
  • Säästad 30%
  • Formaat: 308 pages, 155 Line drawings, color; 164 Line drawings, black and white; 319 Illustrations, black and white
  • Ilmumisaeg: 20-Mar-2023
  • Kirjastus: CRC Press
  • ISBN-13: 9781003293064

This practical and unique textbook explains the core areas of molecular spectroscopy as a classical teacher would, from the perspective of both theory and experimental practice. Comprehensive in scope, the author carefully explores and explains each concept, walking side by side with the student through carefully constructed text, pedagogy, and derivations to ensure comprehension of the basics before approaching higher level topics. The author incorporates both electric resonance and magnetic resonance in the textbook.



This practical textbook explains the core areas of molecular spectroscopy as a classical teacher would. The author explores and explains each concept, walking side by side with the student through carefully constructed text, pedagogy, and derivations to ensure comprehension of the basics before approaching higher level topics.
Preface xi
About the Author xiii
Chapter 1 Electromagnetic Wave Nature of Light
1(10)
1.1 Gauss's Law of Electrostatics
1(1)
1.2 Gauss's Law of Magnetism
1(1)
1.3 Faraday's Law of Induced Electric Field
1(1)
1.4 Ampere's Law of Induced Magnetic Field
2(1)
1.5 Maxwell's Equations
3(1)
1.6 Wave Equation
4(1)
1.7 Homogeneous Traveling Plane Wave
5(2)
1.8 Wave Packet
7(4)
Problems
9(1)
Bibliography
9(2)
Chapter 2 Postulates of Quantum Mechanics
11(14)
2.1 Stern-Gerlach Experiment
11(1)
2.2 Postulates of Quantum Mechanics
12(8)
2.2.1 Postulate 1
12(1)
2.2.2 Postulate 2
12(1)
2.2.3 Postulate 3
13(3)
2.2.4 Postulate 4
16(2)
2.2.5 Postulate 5
18(1)
2.2.6 Postulate 6
19(1)
2.3 Perturbation Theory
20(5)
2.3.1 Perturbation of a Nondegenerate System
20(1)
2.3.2 Perturbation of a Degenerate State
21(2)
Problems
23(1)
Bibliography
24(1)
Chapter 3 Semiclassical Theory of Spectroscopic Transition
25(12)
3.1 Two-Level System
25(1)
3.2 System-Radiation Interaction
25(1)
3.3 Time Development of Eigenstate Probabilities
26(1)
3.4 Probability Expressions
27(1)
3.5 Rabi Oscillations
27(1)
3.6 Transition Probability and Absorption Coefficient
28(1)
3.7 Limitations of the Theory
29(1)
3.8 Collisional Line Broadening
30(1)
3.9 Line Broadening from Excited State Lifetime
30(1)
3.10 Spectral Line Shape and Line Width
31(6)
3.10.1 Homogeneous or Lorentzian Line Shape
31(1)
3.10.2 Inhomogeneous or Gaussian Line Shape
32(1)
3.10.3 Doppler Interpretation of Inhomogeneous Line Shape
32(3)
Problems
35(1)
Bibliography
36(1)
Chapter 4 Hydrogen Atom Spectra
37(28)
4.1 Free Hydrogen Atom
37(1)
4.2 Eigenvalues, Quantum Numbers, Spectra, and Selection Rules
38(2)
4.3 Hydrogen Atom in External Magnetic Field: Zeeman Effect and Spectral Multiplets
40(3)
4.3.1 Magnetic Moment in External Magnetic Field
40(1)
4.3.2 Larmor Precession
41(1)
4.3.3 Eigenstate, Operator, and Eigenvalue in External Magnetic Field
42(1)
4.4 Anomalous Zeeman Effect and Further Splitting of Spectra
43(5)
4.4.1 Electron Spin and Spin Magnetic Moment
43(1)
4.4.2 Lande g-factor
43(1)
4.4.3 Spin-Orbit Coupling
44(1)
4.4.4 Spin-Orbit Coupling Energy
45(1)
4.4.5 Spectroscopic Notation
46(1)
4.4.6 Fine Structure of Atomic Spectra
46(1)
4.4.7 Splitting of mj Degeneracy: Anomalous Zeeman Effect
47(1)
4.5 Zeeman Effect in Weak Magnetic Field
48(2)
4.6 Zeeman Splitting Changeover from Weak to Strong Magnetic Field
50(1)
4.7 Electron-Nuclear Hyperfine Interaction
51(2)
4.8 Zeeman Splitting of Hyperfine Energy Levels
53(2)
4.8.1 Zeeman Splitting of Hyperfine States in Weak Magnetic Field
54(1)
4.8.2 Hyperfine States of Hydrogen Atom in Strong Magnetic Field
55(1)
4.9 Stark Effect
55(10)
4.9.1 Hydrogen Atom in External Electric Field
56(1)
4.9.2 Effect on the n = 1 Level
56(1)
4.9.3 Effect on the n = 2 Level
57(5)
Problems
62(1)
Bibliography
63(2)
Chapter 5 Molecular Eigenstates
65(20)
5.1 Born-Oppenheimer Approximation
65(1)
5.2 Solution of the Total Schrodinger Equation
66(1)
5.3 States of Nuclear Motion
67(1)
5.4 Adiabatic and Nonadiabatic Processes
68(1)
5.5 Molecular Potential Energy States
69(2)
5.5.1 One-Electron Hydrogen-Like Atom States
69(1)
5.5.2 Molecular Electronic States Derived from Atom States
69(2)
5.6 LCAO-MO
71(1)
5.7 Molecular Eigenstates of H2+
71(2)
5.8 Molecular Eigenstates of H2
73(2)
5.9 Singlet and Triplet Excited States of H2
75(1)
5.10 Electric Dipole Transition in H2
76(1)
5.11 Molecular Orbital Energy and Electronic Configuration
77(1)
5.12 Molecular Orbitals of Heteronuclear Diatomic Molecule
78(1)
5.13 Molecular Orbitals of Large Systems
79(6)
5.13.1 LCAO-MO of Porphyrins
79(1)
5.13.2 Free-Electron Orbitals of Porphyrins
79(4)
Problems
83(1)
Bibliography
83(2)
Chapter 6 Elementary Group Theory
85(14)
6.1 Symmetry Operations
85(2)
6.1.1 Rotation
85(1)
6.1.2 Reflection
86(1)
6.1.3 Improper Rotation
87(1)
6.1.4 Inversion
87(1)
6.2 Point Group
87(3)
6.2.1 Properties of Point Groups
87(1)
6.2.2 Representation of Symmetry Operators of a Group
88(2)
6.3 Group Representations
90(1)
6.4 Labels of Irreducible Representations
91(1)
6.5 Reduction of Representations to Irreducible Representations
91(1)
6.6 Direct Product of Irreducible Representations
92(1)
6.7 Applications
93(6)
6.7.1 Energy Eigenvalues of Molecular Orbitals
94(1)
6.7.2 Removal of Energy Degeneracy by Perturbation
94(1)
6.7.3 General Selection Rules for Electronic Transitions
94(3)
6.7.4 Specific Transition Rules
97(1)
Problems
97(1)
Bibliography
98(1)
Chapter 7 Rotational Spectra
99(12)
7.1 Rotational Spectra of Diatomic Molecules
99(5)
7.1.1 Schrodinger Equation for Diatomic Rotation
99(1)
7.1.2 Rotational Energy of Rigid Rotor
100(1)
7.1.3 Rotational Energy of Non-Rigid Rotor
101(1)
7.1.4 Stationary State Eigenfunctions and Rotational Transitions
101(1)
7.1.5 Energy Levels and Representation of Pure Rotational Spectra
102(2)
7.2 Rotational Spectra of Polyatomic Molecules
104(7)
7.2.1 Rotational Inertia
104(1)
7.2.2 Energy of Rigid Rotors
105(1)
7.2.3 Wavefunctions of Symmetric Tops
106(1)
7.2.4 Commutation of Rotational Angular Momentum Operators
106(1)
7.2.5 Eigenvalues for Tops
107(1)
7.2.6 Selection Rules for Polyatomic Rotational Transition
108(2)
Problems
110(1)
Bibliography
110(1)
Chapter 8 Diatomic Vibrations, Energy, and Spectra
111(8)
8.1 Classical Description of an Oscillator
111(1)
8.2 Schrodinger Equation for Nuclear Vibration
111(2)
8.3 Selection Rules for Vibrational Transitions
113(2)
8.4 Rotational--Vibrational Combined Structure
115(4)
Problems
116(1)
Bibliography
117(2)
Chapter 9 Polyatomic Vibrations and Spectra
119(20)
9.1 A Simple Classical Model to Define a Normal Mode
119(1)
9.2 Vibrational Energy from Classical Mechanics
120(1)
9.3 Solution of Lagrange's Equation
121(2)
9.4 Vibrational Hamiltonian and Wavefunction
123(1)
9.5 Symmetry of Normal Modes
123(1)
9.6 Finding the Vibrational Frequencies
124(3)
9.7 Activity of Normal Modes of Vibration
127(1)
9.8 Secondary Band Manifold in Infrared Spectra
127(6)
9.8.1 Overtone Band
128(1)
9.8.2 Hot Band
128(1)
9.8.3 Combination Band
129(1)
9.8.4 Fermi Resonance Band
130(1)
9.8.5 Vibrational Angular Momentum and Coriolis-Perturbed Band Structure
131(2)
9.9 Rotational Band Structure in Vibrational Bands
133(2)
9.10 Selection Rules for Vibrational Transition
135(4)
Problems
137(1)
Bibliography
137(2)
Chapter 10 Raman Spectroscopy
139(26)
10.1 Light Scattering
139(2)
10.2 Frequencies of Rayleigh and Raman-Scattered Light
141(2)
10.3 Limitation of the Classical Theory of Raman Scattering
143(1)
10.4 Brillouin Scattering
143(1)
10.5 Raman Tensor
144(4)
10.5.1 Polarizability Tensor Ellipsoid
145(1)
10.5.2 Nomenclature of the Polarizability Tensor
146(1)
10.5.3 Anisotropy of Polarizability
147(1)
10.5.4 Isotropic Average of Scattered Intensity
148(1)
10.6 Semi-Classical Theory of Raman Scattering
148(6)
10.6.1 Rotational Raman Spectra
149(2)
10.6.2 Vibration-Rotation Raman Spectra
151(3)
10.7 Raman Tensor and Vibrational Symmetry
154(1)
10.8 Secondary or Coupled Bands in Raman Spectra
155(1)
10.9 Solution Phase Raman Scattering
155(1)
10.10 Resonance Raman Scattering
156(5)
10.11 Sundries and Outlook
161(4)
Problems
163(1)
Bibliography
164(1)
Chapter 11 Electronic Spectra
165(36)
11.1 Energy Term-Value Formulas for Molecular States
165(1)
11.2 Dipole Transitions in the Electronic-Vibrational-Rotational Spectra
166(2)
11.3 Electronic Transition Dipole with Nuclear Configurations
168(1)
11.4 Franck-Condon Factor
168(2)
11.5 Progression of Vibrational Absorption in an Electronic Band
170(1)
11.6 Analysis of Vibrational Bands
171(1)
11.7 Analysis Rotational Bands
172(2)
11.8 Electron-Nuclear Rotational Coupling and Splitting of Rotational Energy Levels
174(4)
11.8.1 Hund's Cases
174(3)
11.8.2 A-type Doubling
177(1)
11.9 Selection Rules for Electronic Transitions in Diatomic Molecules
178(5)
11.9.1 Symmetry-Based General Rules for Electronic Transitions
179(1)
11.9.2 Selection Rules
180(1)
11.9.3 Selection Rules Pertaining to Hund's Coupling Cases
180(3)
11.10 Perturbation Manifests in Vibronic Spectra
183(6)
11.10.1 Rotational Perturbation and Kronig's Selection Rules
184(1)
11.10.2 Frequency Shift and A-doubling in Rotational Perturbation
184(1)
11.10.3 Vibrational Perturbation
185(1)
11.10.4 Predissociation
186(2)
11.10.5 Diffused Molecular Spectra
188(1)
11.11 Stark Effect in Rotational Transitions: Observation and Selection Rules
189(2)
11.12 Zeeman Effect on Rotational Energy Levels and Selection Rules
191(2)
11.13 Magnetooptic Rotational Effect
193(8)
Problems
199(1)
Bibliography
200(1)
Chapter 12 Vibrational and Rotational Coherence Spectroscopy
201(26)
12.1 Ultrashort Time of Spectroscopy
201(1)
12.2 Wave Packet
202(1)
12.3 Coherence
202(5)
12.3.1 Linear Superposition and Interference
202(2)
12.3.2 Vibrational Coherence
204(1)
12.3.3 Rotational Coherence
205(1)
12.3.4 Coherence Decay
206(1)
12.4 Wave Packet Oscillation
207(1)
12.5 Frequency Spectrum of Time-Domain Coherence
208(1)
12.6 Assignment of Vibrational Bands
208(1)
12.7 Pure Rotational Coherence
209(2)
12.8 Density Operator, Coherence, and Coherence Transfer
211(8)
12.8.1 Homogeneous and Statistical Mixture of States of a System
211(1)
12.8.2 Density Operator
212(4)
12.8.3 Time Evolution of the Density Operator
216(1)
12.8.4 Matrix Representation of the Unitary Transformation Superoperator
217(1)
12.8.5 Matrix Representation of the Commutator Superoperator
218(1)
12.8.6 Partial Density Matrix
218(1)
12.8.7 Density Operator Expression Using Irreducible Tensor Operator
218(1)
12.9 Density Matrix Treatment of an Optical Experiment
219(8)
Problems
225(1)
Bibliography
226(1)
Chapter 13 Nuclear Magnetic Resonance Spectroscopy
227(75)
13.1 Nuclear Spin of Different Elements
227(1)
13.2 Excited-State Nuclear Spin
227(1)
13.3 Nuclear Spin Angular Momentum and Magnetic Moment
227(1)
13.4 Zeeman Splitting of Nuclear Energy Levels
228(1)
13.5 Larmor Precession of Angular Momentum
228(1)
13.6 Transition Torque Mechanics
229(1)
13.7 Spin Population and NMR Transition
230(1)
13.7.1 Static Field Dependence of Signal Intensity
230(1)
13.7.2 Nuclear Receptivity
230(1)
13.7.3 Macroscopic Magnetization
231(1)
13.8 Bloch Equations and Relaxation Times
231(1)
13.9 The Rotating Frame
232(1)
13.10 Bloch Equations in the Rotating Frame
233(1)
13.11 RF Pulse and Signal Generation
234(3)
13.12 Origin of Chemical Shift: Local Shielding
237(1)
13.13 Long-Range Shielding
238(5)
13.13.1 Ring Current Effect, σr
239(1)
13.13.2 Electric Field Effect, σe
239(1)
13.13.3 Bond Magnetic Anisotropy, σm
240(1)
13.13.4 Shielding by Hydrogen Bonding, σH
240(1)
13.13.5 Hyperfine Shielding, σhfs
241(1)
13.13.6 Shielding from Solvent Effect, σs
242(1)
13.13.7 Chemical Shift Scale
243(1)
13.14 Spin-Spin Coupling
243(4)
13.15 Basic Theory of the Origin of Nuclear Spin Relaxation
247(4)
13.16 Mechanism of Spin Relaxation
251(1)
13.16.1 Shielding Anisotropy
251(1)
13.16.2 Spin-Rotation Interaction
252(1)
13.16.3 Scalar Interaction
252(1)
13.16.4 Paramagnetic Effect
252(1)
13.16.5 Dipole-Dipole Interaction
252(1)
13.17 Dipolar Interaction and Cross-Relaxation
252(2)
13.18 Effect of Dipolar Interaction on Nuclear Relaxation
254(2)
13.19 Spin Cross-Relaxation: Solomon Equations
256(2)
13.20 Nuclear Overhauser Effect (NOE)
258(4)
13.20.1 Positive and Negative NOE
258(1)
13.20.2 Direct and Indirect NOE Transfer
259(1)
13.20.3 Rotating Frame Overhauser Effect
260(1)
13.20.4 Transient NOE
261(1)
13.21 Chemical Exchange
262(4)
13.21.1 Effect of Chemical Exchange on Line Shape
263(2)
13.21.2 One-Sided Chemical Reaction
265(1)
13.22 Hahn Echo and Double Resonance
266(1)
13.23 Echo Modulation and J-spectroscopy
267(2)
13.24 Heteronuclear J-spectroscopy
269(1)
13.25 Polarization Transfer (INEPT and Refocused INEPT)
270(1)
13.26 Two-Dimensional J-resolved Spectroscopy
271(2)
13.26.1 Absence of Coherence Transfer in 2D J-spectroscopy
272(1)
13.26.2 2D J-spectroscopy in Strong Coupling Limit
272(1)
13.27 Density Matrix Method in NMR
273(8)
13.27.1 Outline of the Density Matrix Apparatus in NMR
274(1)
13.27.2 Expression of Nuclear Spin Density Operators
275(4)
13.27.3 Transformations of Product Operators
279(2)
13.28 Homonuclear Correlation Spectroscopy (COSY)
281(2)
13.29 Relayed Correlation Spectroscopy (Relay COSY)
283(2)
13.30 Total Correlation Spectroscopy (TOCSY)
285(1)
13.31 2D Nuclear Overhauser Enhancement Spectroscopy (NOESY)
286(2)
13.32 Pure Exchange Spectroscopy (EXSY)
288(1)
13.33 Phase Cycling, Spurious Signals, and Coherence Transfer
289(2)
13.34 Coherence Transfer Pathways
291(1)
13.35 Magnetic Field Gradient Pulse
292(1)
13.36 Heteronuclear Correlation Spectroscopy
293(3)
13.37 3D NMR
296(4)
13.37.1 Dissection of a 3D Spectrum
297(1)
13.37.2 NOESY-[ 1H-15N]HSQC
298(1)
13.37.3 Triple-Resonance 3D Spectroscopy
298(2)
13.38 Calculation of 3D Molecular Structure
300(2)
Problems 302(2)
Bibliography 304(1)
Index 305
Abani K. Bhuyan has been in the Chemistry faculty at the University of Hyderabad since 2000, and is currently a Senior Professor of Physical Chemistry. He received his PhD in Molecular Biophysics from the University of Pennsylvania in 1995 and was a Visiting Fellow at Tata Institute of Fundamental Research from 1995 to 2000.