Muutke küpsiste eelistusi

E-raamat: Fundamental Math and Physics for Scientists and Engineers [Wiley Online]

  • Formaat: 464 pages
  • Ilmumisaeg: 19-Dec-2014
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1118979796
  • ISBN-13: 9781118979792
  • Wiley Online
  • Hind: 65,50 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 464 pages
  • Ilmumisaeg: 19-Dec-2014
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1118979796
  • ISBN-13: 9781118979792
Provides a concise overview of the core undergraduate physics and applied mathematics curriculum for students and practitioners of science and engineering Fundamental Math and Physics for Scientists and Engineers summarizes college and university level physics together with the mathematics frequently encountered in engineering and physics calculations. The presentation provides straightforward, coherent explanations of underlying concepts emphasizing essential formulas, derivations, examples, and computer programs. Content that should be thoroughly mastered and memorized is clearly identified while unnecessary technical details are omitted. Fundamental Math and Physics for Scientists and Engineers is an ideal resource for undergraduate science and engineering students and practitioners, students reviewing for the GRE and graduate-level comprehensive exams, and general readers seeking to improve their comprehension of undergraduate physics.





Covers topics frequently encountered in undergraduate physics, in particular those appearing in the Physics GRE subject examination Reviews relevant areas of undergraduate applied mathematics, with an overview chapter on scientific programming Provides simple, concise explanations and illustrations of underlying concepts

Succinct yet comprehensive, Fundamental Math and Physics for Scientists and Engineers constitutes a reference for science and engineering students, practitioners and non-practitioners alike.
1 Introduction 1(2)
2 Problem Solving 3(3)
2.1 Analysis
3(1)
2.2 Test-Taking Techniques
4(2)
2.2.1 Dimensional Analysis
5(1)
3 Scientific Programming 6(6)
3.1 Language Fundamentals
6(6)
3.1.1 Octave Programming
7(5)
4 Elementary Mathematics 12(20)
4.1 Algebra
12(5)
4.1.1 Equation Manipulation
12(1)
4.1.2 Linear Equation Systems
13(1)
4.1.3 Factoring
14(1)
4.1.4 Inequalities
15(1)
4.1.5 Sum Formulas
16(1)
4.1.6 Binomial Theorem
17(1)
4.2 Geometry
17(4)
4.2.1 Angles
18(1)
4.2.2 Triangles
18(1)
4.2.3 Right Triangles
19(1)
4.2.4 Polygons
20(1)
4.2.5 Circles
20(1)
4.3 Exponential, Logarithmic Functions, and Trigonometry
21(7)
4.3.1 Exponential Functions
21(1)
4.3.2 Inverse Functions and Logarithms
21(1)
4.3.3 Hyperbolic Functions
22(1)
4.3.4 Complex Numbers and Harmonic Functions
23(2)
4.3.5 Inverse Harmonic and Hyperbolic Functions
25(1)
4.3.6 Trigonometric Identities
26(2)
4.4 Analytic Geometry
28(4)
4.4.1 Lines and Planes
28(1)
4.4.2 Conic Sections
29(2)
4.4.3 Areas, Volumes, and Solid Angles
31(1)
5 Vectors and Matrices 32(18)
5.1 Matrices and Matrix Products
32(2)
5.2 Equation Systems
34(1)
5.3 Traces and Determinants
35(3)
5.4 Vectors and Inner Products
38(2)
5.5 Cross and Outer Products
40(1)
5.6 Vector Identities
41(1)
5.7 Rotations and Orthogonal Matrices
42(1)
5.8 Groups and Matrix Generators
43(2)
5.9 Eigenvalues and Eigenvectors
45(3)
5.10 Similarity Transformations
48(2)
6 Calculus of a Single Variable 50(12)
6.1 Derivatives
50(4)
6.2 Integrals
54(6)
6.3 Series
60(2)
7 Calculus of Several Variables 62(10)
7.1 Partial Derivatives
62(4)
7.2 Multidimensional Taylor Series and Extrema
66(1)
7.3 Multiple Integration
67(2)
7.4 Volumes and Surfaces of Revolution
69(1)
7.5 Change of Variables and Jacobians
70(2)
8 Calculus of Vector Functions 72(13)
8.1 Generalized Coordinates
72(5)
8.2 Vector Differential Operators
77(4)
8.3 Vector Differential Identities
81(1)
8.4 Gauss's and Stokes' Laws and Green's Identities
82(1)
8.5 Lagrange Multipliers
83(2)
9 Probability Theory and Statistics 85(9)
9.1 Random Variables, Probability Density, and Distributions
85(1)
9.2 Mean, Variance, and Standard Deviation
86(1)
9.3 Variable Transformations
86(1)
9.4 Moments and Moment-Generating Function
86(1)
9.5 Multivariate Probability Distributions, Covariance, and Correlation
87(1)
9.6 Gaussian, Binomial, and Poisson Distributions
87(4)
9.7 Least Squares Regression
91(1)
9.8 Error Propagation
92(1)
9.9 Numerical Models
93(1)
10 Complex Analysis 94(14)
10.1 Functions of a Complex Variable
94(1)
10.2 Derivatives, Analyticity, and the Cauchy-Riemann Relations
95(1)
10.3 Conformal Mapping
96(1)
10.4 Cauchy's Theorem and Taylor and Laurent Series
97(4)
10.5 Residue Theorem
101(4)
10.6 Dispersion Relations
105(1)
10.7 Method of Steepest Decent
106(2)
11 Differential Equations 108(14)
11.1 Linearity, Superposition, and Initial and Boundary Values
108(1)
11.2 Numerical Solutions
109(3)
11.3 First-Order Differential Equations
112(2)
11.4 Wronskian
114(1)
11.5 Factorization
115(1)
11.6 Method of Undetermined Coefficients
115(1)
11.7 Variation of Parameters
116(2)
11.8 Reduction of Order
118(1)
11.9 Series Solution and Method of Frobenius
118(1)
11.10 Systems of Equations, Eigenvalues, and Eigenvectors
119(3)
12 Transform Theory 122(16)
12.1 Eigenfunctions and Eigenvectors
122(1)
12.2 Sturm-Liouville Theory
123(2)
12.3 Fourier Series
125(2)
12.4 Fourier Transforms
127(1)
12.5 Delta Functions
128(3)
12.6 Green's Functions
131(4)
12.7 Laplace Transforms
135(2)
12.8 z-Transforms
137(1)
13 Partial Differential Equations and Special Functions 138(28)
13.1 Separation of Variables and Rectangular Coordinates
138(7)
13.2 Legendre Polynomials
145(5)
13.3 Spherical Harmonics
150(6)
13.4 Bessel Functions
156(6)
13.5 Spherical Bessel Functions
162(4)
14 Integral Equations and the Calculus of Variations 166(4)
14.1 Volterra and Fredholm Equations
166(2)
14.2 Calculus of Variations the Euler-Lagrange Equation
168(2)
15 Particle Mechanics 170(40)
15.1 Newton's Laws
170(1)
15.2 Forces
171(2)
15.3 Numerical Methods
173(1)
15.4 Work and Energy
174(2)
15.5 Lagrange Equations
176(4)
15.6 Three-Dimensional Particle Motion
180(1)
15.7 Impulse
181(1)
15.8 Oscillatory Motion
181(4)
15.9 Rotational Motion About a Fixed Axis
185(2)
15.10 Torque and Angular Momentum
187(1)
15.11 Motion in Accelerating Reference Systems
188(1)
15.12 Gravitational Forces and Fields
189(2)
15.13 Celestial Mechanics
191(2)
15.14 Dynamics of Systems of Particles
193(4)
15.15 Two-Particle Collisions and Scattering
197(2)
15.16 Mechanics of Rigid Bodies
199(7)
15.17 Hamilton's Equation and Kinematics
206(4)
16 Fluid Mechanics 210(5)
16.1 Continuity Equation
210(2)
16.2 Euler's Equation
212(1)
16.3 Bernoulli's Equation
213(2)
17 Special Relativity 215(12)
17.1 Four-Vectors and Lorentz Transformation
215(2)
17.2 Length Contraction, Time Dilation, and Simultaneity
217(2)
17.3 Covariant Notation
219(2)
17.4 Casuality and Minkowski Diagrams
221(1)
17.5 Velocity Addition and Doppler Shift
222(1)
17.6 Energy and Momentum
223(4)
18 Electromagnetism 227(55)
18.1 Maxwell's Equations
227(6)
18.2 Gauss's Law
233(2)
18.3 Electric Potential
235(3)
18.4 Current and Resistivity
238(3)
18.5 Dipoles and Polarization
241(3)
18.6 Boundary Conditions and Green's Functions
244(4)
18.7 Multipole Expansion
248(1)
18.8 Relativistic Formulation of Electromagnetism, Gauge Transformations, and Magnetic Fields
249(7)
18.9 Magnetostatics
256(3)
18.10 Magnetic Dipoles
259(1)
18.11 Magnetization
260(2)
18.12 Induction and Faraday's Law
262(4)
18.13 Circuit Theory and Kirchoff's Laws
266(4)
18.14 Conservation Laws and the Stress Tensor
270(4)
18.15 Lienard-Wiechert Potentials
274(1)
18.16 Radiation from Moving Charges
275(7)
19 Wave Motion 282(36)
19.1 Wave Equation
282(2)
19.2 Propagation of Waves
284(2)
19.3 Planar Electromagnetic Waves
286(1)
19.4 Polarization
287(1)
19.5 Superposition and Interference
288(4)
19.6 Multipole Expansion for Radiating Fields
292(3)
19.7 Phase and Group Velocity
295(1)
19.8 Minimum Time Principle and Ray Optics
296(1)
19.9 Refraction and Snell's Law
297(2)
19.10 Lenses
299(2)
19.11 Mechanical Reflection
301(1)
19.12 Doppler Effect and Shock Waves
302(1)
19.13 Waves in Periodic Media
303(1)
19.14 Conducting Media
304(2)
19.15 Dielectric Media
306(1)
19.16 Reflection and Transmission
307(4)
19.17 Diffraction
311(2)
19.18 Waveguides and Cavities
313(5)
20 Quantum Mechanics 318(35)
20.1 Fundamental Principles
318(1)
20.2 Particle-Wave Duality
319(1)
20.3 Interference of Quantum Waves
320(1)
20.4 Schrodinger Equation
321(1)
20.5 Particle Flux and Reflection
322(2)
20.6 Wave Packet Propagation
324(2)
20.7 Numerical Solutions
326(2)
20.8 Quantum Mechanical Operators
328(3)
20.9 Heisenberg Uncertainty Relation
331(3)
20.10 Hilbert Space Representation
334(2)
20.11 Square Well and Delta Function Potentials
336(3)
20.12 WKB Method
339(3)
20.13 Harmonic Oscillators
342(1)
20.14 Heisenberg Representation
343(1)
20.15 Translation Operators
344(1)
20.16 Perturbation Theory
345(6)
20.17 Adiabatic Theorem
351(2)
21 Atomic Physics 353(26)
21.1 Properties of Fermions
353(1)
21.2 Bohr Model
354(2)
21.3 Atomic Spectra and X-Rays
356(1)
21.4 Atomic Units
356(1)
21.5 Angular Momentum
357(1)
21.6 Spin
358(1)
21.7 Interaction of Spins
359(1)
21.8 Hydrogenic Atoms
360(2)
21.9 Atomic Structure
362(1)
21.10 Spin-Orbit Coupling
362(2)
21.11 Atoms in Static Electric and Magnetic Fields
364(4)
21.12 Helium Atom and the H2+ Molecule
368(3)
21.13 Interaction of Atoms with Radiation
371(2)
21.14 Selection Rules
373(1)
21.15 Scattering Theory
374(5)
22 Nuclear and Particle Physics 379(7)
22.1 Nuclear Properties
379(2)
22.2 Radioactive Decay
381(1)
22.3 Nuclear Reactions
382(1)
22.4 Fission and Fusion
383(1)
22.5 Fundamental Properties of Elementary Particles
383(3)
23 Thermodynamics and Statistical Mechanics 386(36)
23.1 Entropy
386(2)
23.2 Ensembles
388(3)
23.3 Statistics
391(2)
23.4 Partition Functions
393(3)
23.5 Density of States
396(1)
23.6 Temperature and Energy
397(3)
23.7 Phonons and Photons
400(1)
23.8 The Laws of Thermodynamics
401(2)
23.9 The Legendre Transformation and Thermodynamic Quantities
403(4)
23.10 Expansion of Gases
407(2)
23.11 Heat Engines and the Carnot Cycle
409(1)
23.12 Thermodynamic Fluctuations
410(2)
23.13 Phase Transformations
412(1)
23.14 The Chemical Potential and Chemical Reactions
413(1)
23.15 The Fermi Gas
414(2)
23.16 Bose Einstein Condensation
416(1)
23.17 Physical Kinetics and Transport Theory
417(5)
24 Condensed Matter Physics 422(8)
24.1 Crystal Structure
422(1)
24.2 X-Ray Diffraction
423(1)
24.3 Thermal Properties
424(1)
24.4 Electron Theory of Metals
425(1)
24.5 Superconductors
426(1)
24.6 Semiconductors
427(3)
25 Laboratory Methods 430(4)
25.1 Interaction of Particles with Matter
430(1)
25.2 Radiation Detection and Counting Statistics
431(1)
25.3 Lasers
432(2)
Index 434
David Yevick, P. Eng. (Ontario) is Professor of Physics at the University of Waterloo, Canada. He received his A.B. and Ph.D. degrees respectively from Harvard University in Physics (1973) and Princeton University in Particle Physics (1977). Dr. Yevick is a leading scientist in the numerical simulation of optical communication systems, in particular electric field propagation in guided-wave optics, optical processes in semiconductors, and communication system modeling. Dr. Yevick is a fellow of the APS, OSA, and IEEE.

Hannah Yevick holds a Ph.D. in Biological Physics from the Curie Institute, France, as well as a M.A. from Columbia University, and a B.A. from the University of Pennsylvania in Physics. Her experience with the Physics GRE and graduate comprehensive exams has enhanced the text.