Foreword |
|
xi | |
Preface |
|
xv | |
Our Gratitude with three R's |
|
xix | |
Authors |
|
xxi | |
|
|
xxiii | |
|
Chapter 1 Machine Learning |
|
|
1 | (8) |
|
|
1 | (1) |
|
1.2 Machine Learning Approaches |
|
|
1 | (3) |
|
1.3 Understanding Pattern Recognition |
|
|
4 | (1) |
|
1.4 Machine Learning Applications and Examples |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
7 | (2) |
|
Chapter 2 Ground Truth Data for Remote Sensing Image Classification |
|
|
9 | (8) |
|
|
9 | (2) |
|
2.2 Creation of Training Data |
|
|
11 | (1) |
|
2.3 Criteria for Ground Truth Data |
|
|
12 | (1) |
|
2.4 Training Data in Machine Learning |
|
|
12 | (2) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (2) |
|
Chapter 3 Fuzzy Classifiers |
|
|
17 | (16) |
|
|
17 | (3) |
|
|
17 | (1) |
|
3.1.2 Traditional Classifiers versus Soft Classifiers |
|
|
18 | (1) |
|
3.1.3 Linear and Nonlinear Classifiers |
|
|
19 | (1) |
|
3.2 Clustering Algorithms |
|
|
20 | (10) |
|
3.2.1 Fuzzy c-Means (FCM) Classifier |
|
|
20 | (2) |
|
3.2.2 Possibilistic c-Means (PCM) Classifier |
|
|
22 | (2) |
|
3.2.3 Noise Clustering (NC) Classifier |
|
|
24 | (2) |
|
3.2.3.1 Noise Clustering Algorithm |
|
|
26 | (1) |
|
3.2.3.2 Why Noise Clustering over PCM? |
|
|
26 | (1) |
|
3.2.3.3 Drawbacks of Possibilistic c-Means (PCM) |
|
|
27 | (1) |
|
3.2.4 Improved Possibilistic c-Means (IPCM) |
|
|
27 | (1) |
|
3.2.4.1 Advantages of IPCM over PCM |
|
|
27 | (1) |
|
3.2.4.2 Mathematical Formulation of IPCM |
|
|
27 | (1) |
|
3.2.4.3 Characteristic Features of IPCM |
|
|
28 | (1) |
|
3.2.5 Modified Possibilistic c-Means (MPCM) |
|
|
29 | (1) |
|
3.2.5.1 Mathematical Formulation of MPCM |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (3) |
|
Chapter 4 Learning Based Classifiers |
|
|
33 | (24) |
|
|
33 | (1) |
|
4.2 Variants of Artificial Neural Network (ANN) |
|
|
33 | (8) |
|
|
38 | (1) |
|
|
39 | (2) |
|
4.3 Convolutional Neural Network (CNN) |
|
|
41 | (5) |
|
4.3.1 Convolutional Neural Networks Image Classification |
|
|
41 | (2) |
|
4.3.2 Supervised Machine Learning |
|
|
43 | (3) |
|
4.4 Recurrent Neural Network (RNN) |
|
|
46 | (1) |
|
4.5 Hybrid Learning Network (HLN) |
|
|
47 | (1) |
|
4.5.1 Training Issues -- Remote Sensing Data Domain |
|
|
48 | (1) |
|
4.6 Deep Learning Concepts |
|
|
48 | (2) |
|
4.6.1 Challenges in Learning Algorithms |
|
|
49 | (1) |
|
4.7 In-house Tool for Study of Learning Algorithms |
|
|
50 | (3) |
|
|
53 | (1) |
|
|
54 | (3) |
|
Chapter 5 Hybrid Fuzzy Classifiers |
|
|
57 | (38) |
|
|
57 | (1) |
|
|
57 | (5) |
|
5.2.1 Entropy Based Hybrid Soft Classifiers |
|
|
59 | (1) |
|
5.2.2 Fuzzy c-Means with Entropy (FCME) |
|
|
59 | (1) |
|
5.2.3 Noise Clustering with Entropy (NCE) Classifier |
|
|
60 | (2) |
|
5.3 Similarity/Dissimilarity Measures in Fuzzy Classifiers |
|
|
62 | (6) |
|
5.3.1 Similarity Measures |
|
|
63 | (1) |
|
5.3.1.1 Cosine Similarity Measure |
|
|
63 | (1) |
|
5.3.1.2 Correlation Similarity Measure |
|
|
63 | (1) |
|
5.3.2 Dissimilarity Measures |
|
|
64 | (1) |
|
5.3.2.1 Euclidean Distance |
|
|
65 | (1) |
|
5.3.2.2 Manhattan Distance |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
5.3.2.6 Mean Absolute Difference |
|
|
67 | (1) |
|
5.3.2.7 Median Absolute Difference |
|
|
67 | (1) |
|
5.3.2.8 Normalized Squared Euclidean |
|
|
67 | (1) |
|
5.3.2.9 Composite Measure: Combining Similarity and Dissimilarity Measures |
|
|
68 | (1) |
|
5.4 Spectral Characterization Measures |
|
|
68 | (2) |
|
5.4.1 Spectral Information Divergence (SID) |
|
|
68 | (1) |
|
5.4.2 Spectral Angle Mapper (SAM) |
|
|
69 | (1) |
|
5.4.3 Spectral Correlation Angle (SCA) |
|
|
69 | (1) |
|
5.5 Hybridization of Spectral Measures |
|
|
70 | (1) |
|
5.5.1 SID-SAM Hybridization |
|
|
70 | (1) |
|
5.5.2 SID-SCA Hybridization |
|
|
70 | (1) |
|
5.6 Kernels Concept in Fuzzy Classifiers |
|
|
71 | (3) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
5.6.4 Hybrid Kernel Approach |
|
|
74 | (1) |
|
5.7 Theory behind Markov Random Field (MRF) |
|
|
74 | (7) |
|
|
75 | (1) |
|
5.7.2 Contextual Information Using MRF |
|
|
76 | (1) |
|
5.7.3 Contextual Fuzzy Classifier |
|
|
77 | (1) |
|
|
77 | (1) |
|
5.7.5 Discontinuity Adaptive (DA) Priors |
|
|
78 | (1) |
|
5.7.5.1 Standard Regularization |
|
|
79 | (1) |
|
|
79 | (1) |
|
5.7.5.3 How DA Priors Work |
|
|
80 | (1) |
|
5.8 Convolution Based Local Information in Fuzzy Classifiers |
|
|
81 | (9) |
|
5.8.1 Fuzzy c-Means with Constraints (FCM-S) Algorithm |
|
|
82 | (1) |
|
5.8.2 Possibilistic c-Means with Constraints (PCM-S) Algorithm |
|
|
82 | (1) |
|
5.8.3 Fuzzy Local Information c-Means (FLICM) Algorithm |
|
|
83 | (1) |
|
5.8.4 Possibilistic Local Information c-Means (PLICM) Algorithm |
|
|
84 | (2) |
|
5.8.5 Adaptive Fuzzy Logic Local Information c-Means (ADFLICM) |
|
|
86 | (1) |
|
5.8.6 Adaptive Possibilistic Local Information c-Means (ADPLICM) Algorithm |
|
|
87 | (1) |
|
5.8.7 Modified Possibilistic c-Means with Constraints (MPCM-S) Algorithm |
|
|
88 | (1) |
|
5.8.8 Modified Possibilistic Local Information c-Means (MPLICM) Algorithm |
|
|
89 | (1) |
|
5.8.9 Adaptive Modified Possibilistic Local Information c-Means (ADMPLICM) Algorithm |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
90 | (5) |
|
Chapter 6 Fuzzy Classifiers for Temporal Data Processing |
|
|
95 | (18) |
|
|
95 | (1) |
|
6.2 Temporal Indices Approach |
|
|
96 | (2) |
|
6.3 Feature Selection Methods |
|
|
98 | (1) |
|
6.4 Some Case Studies for Temporal Data Analysis |
|
|
99 | (4) |
|
6.5 Single Class Extraction |
|
|
103 | (5) |
|
6.5.1 Fuzzy Set Theory Based Classifiers for a Single Class Extraction |
|
|
103 | (5) |
|
6.6 Concept for Mono-/Bi-sensor Remote Sensing Data Processing |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
108 | (5) |
|
Chapter 7 Assessment of Accuracy for Soft Classification |
|
|
113 | (18) |
|
|
113 | (2) |
|
7.2 Generation of Testing Data |
|
|
115 | (1) |
|
7.3 Methods for Assessment of Accuracy of Soft Classified Outputs |
|
|
115 | (12) |
|
7.3.1 Fuzzy Error Matrix and Other Associated Operators |
|
|
116 | (1) |
|
7.3.1.1 Fuzzy Error Matrix |
|
|
116 | (2) |
|
7.3.1.2 Composite Operator Based FERM |
|
|
118 | (2) |
|
7.3.1.3 Sub-Pixel Confusion-Uncertainty Matrix (SCM) |
|
|
120 | (3) |
|
7.3.2 Measure of Uncertainty: Entropy |
|
|
123 | (1) |
|
7.3.3 Correlation Coefficient |
|
|
124 | (1) |
|
7.3.4 Root Mean Square Error |
|
|
124 | (1) |
|
7.3.5 Receiver Operating Characteristic (ROC) |
|
|
125 | (1) |
|
7.3.6 Method for Edge Preservation |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
127 | (4) |
Appendix: A1 SMIC: Sub-Pixel Multi-Spectral Image Classifier Package |
|
131 | (10) |
Appendix: A2 Case Studies from SMIC Package |
|
141 | (44) |
Index |
|
185 | |