Muutke küpsiste eelistusi

E-raamat: Gas-Insulated Transmission Lines (GIL) [Wiley Online]

(Energy Sector, Siemens AG, Germany)
  • Formaat: 384 pages
  • Sari: IEEE Press
  • Ilmumisaeg: 02-Dec-2011
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 1119953081
  • ISBN-13: 9781119953081
  • Wiley Online
  • Hind: 140,62 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 384 pages
  • Sari: IEEE Press
  • Ilmumisaeg: 02-Dec-2011
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 1119953081
  • ISBN-13: 9781119953081
Gas-insulated transmission lines (GIL) is an established high voltage technology used when environmental or structural considerations restrict the use of overhead transmission lines. With an overview on the technical, economical and environmental impact and power system implications of GIL, this guide provides a complete understanding of its physical design, features and advantages. The author illustrates how to evaluate when GIL would be the best solution during the planning sequence and how to apply GIL in the electricity power network. Other key features include:





operation and maintenance requirements with information on repair processes, duration, and different monitoring systems enabling the achievement of reliable and safe operation; a wide variety of realized applications from across the world over the past 35 years, illustrating typical fields of application through descriptions of real projects that the author has worked on; and future application possibilities in a smart transmission network, used for solving power transmission problems.

This is an essential reference for engineers involved in planning and executing bulk power transmission projects overground, in tunnels or buried. It offers a concise summary of all areas of the subject and is the perfect aid for utility power engineers, consulting engineers and manufacturers worldwide.
Foreword xiii
Acknowledgements xv
1 Introduction 1(6)
1.1 Changing Electric Power Supply
1(3)
1.2 Advantages of GIL
4(3)
2 History 7(32)
2.1 Transmission Network Development
7(13)
2.1.1 General
7(1)
2.1.2 Power Transmission Levels
8(3)
2.1.3 Long-Distance Power Transmission
11(7)
2.1.4 Current Ratings of Electric Transmission Networks
18(1)
2.1.5 Conclusion of Transmission Network Development
19(1)
2.2 Historical Development of GIL
20(19)
2.2.1 GIL 1st Generation
20(6)
2.2.2 GIL 2nd Generation
26(10)
2.2.3 World-Wide Experiences
36(3)
3 Technology 39(186)
3.1 Gas Insulation
41(24)
3.1.1 Free Gas Space
42(1)
3.1.2 Insulators
42(2)
3.1.3 Gas-Tight Enclosure
44(2)
3.1.4 Insulating Gases
46(19)
3.1.4.1 Sulphur hexafluoride SF6
47(1)
3.1.4.2 N2
48(1)
3.1.4.3 N2/SF6 Gas Mixture
49(16)
3.2 Basic Design
65(28)
3.2.1 Overview
65(3)
3.2.2 Dielectric Dimensioning
68(1)
3.2.3 Thermal Dimensioning
68(1)
3.2.4 Insulation Coordination
68(1)
3.2.5 Electrical Optimization
69(1)
3.2.6 Transmission Network Studies
69(1)
3.2.7 Gas Pressure Dimensions
70(1)
3.2.8 High-Voltage Design Tests
70(2)
3.2.9 Current Rating Design
72(1)
3.2.10 Short-Circuit Rating Design
73(1)
3.2.11 Internal Arc Design
74(2)
3.2.12 Electromagnetic Current Forces Design
76(1)
3.2.13 Mechanical Design
76(1)
3.2.14 Integrated Overvoltage Protection
77(1)
3.2.15 Particles
78(1)
3.2.16 Thermal Design
79(7)
3.2.16.1 General
79(1)
3.2.16.2 Heat Transfer Inside the GIL
79(4)
3.2.16.3 Buried GIL
83(2)
3.2.16.4 Tunnel-Laid GIL
85(1)
3.2.17 Seismic Design
86(7)
3.2.17.1 General
86(1)
3.2.17.2 Modelling of the GIL
86(1)
3.2.17.3 Parameters
86(1)
3.2.17.4 Permitted Stress
87(1)
3.2.17.5 Model of the Calculation
87(1)
3.2.17.6 Analysis Results
88(3)
3.2.17.7 Conclusion
91(2)
3.3 Product Design
93(30)
3.3.1 Technical Data
93(2)
3.3.2 Conductor Pipe
95(1)
3.3.3 Enclosure Pipe
95(2)
3.3.4 Size of Gas Compartment
97(1)
3.3.5 Insulators
98(2)
3.3.6 Sliding Contacts
100(1)
3.3.7 Modular Design
100(3)
3.3.7.1 Straight Unit
100(1)
3.3.7.2 Angle Unit
101(1)
3.3.7.3 Disconnecting Unit
101(1)
3.3.7.4 Compensator Unit
102(1)
3.3.8 Overhead Line Connection
103(1)
3.3.9 Bending Radius
103(1)
3.3.10 Joint Technology for Conductor and Enclosure
104(8)
3.3.10.1 Flanged Joints
105(1)
3.3.10.2 Arc-Welded Joints
106(1)
3.3.10.3 Friction Stir-Welded Joints
107(3)
3.3.10.4 Ultrasonic Test
110(2)
3.3.11 Corrosion Protection.
112(4)
3.3.11.1 Passive. Corrosion Protection
114(1)
3.3.11.2 Active Corrosion Protection
115(1)
3.3.12 On-Site Assembly Work
116(1)
3.3.13 Monitoring
117(6)
3.3.13.1 Gas Density Monitoring
119(1)
3.3.13.2 Partial Discharge Monitoring
120(1)
3.3.13.3 Arc Location System
121(2)
3.4 Quality Control and Diagnostic Tools
123(8)
3.4.1 Quality of Parts
124(1)
3.4.2 Quality of Processes
124(1)
3.4.3 Partial Discharge Detection
125(1)
3.4.4 High-Voltage Testing On-Site
126(4)
3.4.5 Conclusion of Quality Control
130(1)
3.5 Planning Issues
131(18)
3.5.1 Network Impact
131(8)
3.5.1.1 Net Connecting Rules
131(1)
3.5.1.2 Load Flow Calculation
132(7)
3.5.2 Reliability
139(2)
3.5.3 Grounding/Earthing
141(1)
3.5.4 Safety
141(2)
3.5.5 Environmental Limitations
143(2)
3.5.6 Electric Phase Angle Compensation
145(1)
3.5.7 Loadability and Capability Overload
145(8)
3.5.7.1 General
145(1)
3.5.7.2 Calculating Overload for Ambient Temperature
146(3)
3.6 Specification Checklist
149(4)
3.7 Laying Options
153(30)
3.7.1 General
153(1)
3.7.2 Above-Ground Installation
154(5)
3.7.2.1 General
154(1)
3.7.2.2 Corrosion Protection
155(3)
3.7.2.3 Mechanical Stress
158(1)
3.7.2.4 Thermal Stress
158(1)
3.7.2.5 Evaluation of Above-Ground GIL
158(1)
3.7.3 Trench-Laid
159(1)
3.7.3.1 General
159(1)
3.7.3.2 Corrosion Protection
160(1)
3.7.3.3 Mechanical Stress
160(1)
3.7.3.4 Thermal Stress
160(1)
3.7.3.5 Evaluation
160(1)
3.7.4 Tunnel-Laid
160(6)
3.7.4.1 General
160(1)
3.7.4.2 Open Trench-Laid Tunnel
161(1)
3.7.4.3 Bored Tunnel
162(3)
3.7.4.4 Corrosion Protection
165(1)
3.7.4.5 Mechanical Stress
165(1)
3.7.4.6 Thermal Stress
166(1)
3.7.4.7 Evaluation
166(1)
3.7.5 Directly Buried
166(16)
3.7.5.1 General
166(1)
3.7.5.2 Laying Process
167(5)
3.7.5.3 Corrosion Protection
172(3)
3.7.5.4 Mechanical Stress
175(4)
3.7.5.5 Movement
179(2)
3.7.5.6 Thermal Stress
181(1)
3.7.6 Directional Boring
182(1)
3.8 Long-Duration Testing
183(34)
3.8.1 General
183(1)
3.8.2 Tunnel Version
184(13)
3.8.2.1 Test Set-up in a Tunnel
184(5)
3.8.2.2 Test Programme
189(1)
3.8.2.3 On-Site Laying in a Tunnel
189(6)
3.8.2.4 On-Site Repair in a Tunnel
195(1)
3.8.2.5 Test Results in a Tunnel
196(1)
3.8.3 Directly Buried Version
197(18)
3.8.3.1 Test Set-up Directly Buried
197(2)
3.8.3.2 Test Programme Directly Buried
199(2)
3.8.3.3 On-Site Laying Directly Buried
201(2)
3.8.3.4 Repair Process Directly Buried
203(2)
3.8.3.5 Thermal Calculations Directly Buried
205(9)
3.8.3.6 Results of Long Duration Test Directly Buried
214(1)
3.8.4 Long-Duration Test Results
215(2)
3.9 Gas Handling
217(4)
3.9.1 General
217(1)
3.9.2 Gas Mixture Handling
217(2)
3.9.3 Conclusion
219(2)
3.10 Commissioning and On-Site Testing
221(4)
4 System and Network 225(28)
4.1 General
225(1)
4.2 Line Constants of GIL
225(3)
4.2.1 Theoretical Background
225(1)
4.2.2 Resistance
226(1)
4.2.3 Capacitance
226(1)
4.2.4 Inductance
227(1)
4.2.5 Impedance
227(1)
4.2.6 Surge Impedance
227(1)
4.2.7 Natural Power
227(1)
4.3 Transmission Losses
228(3)
4.3.1 General
228(1)
4.3.2 GIL Losses
229(1)
4.3.3 Comparison with Other Transmission Systems
229(2)
4.3.4 Cooling or Ventilation
231(1)
4.4 Operational Aspects
231(3)
4.4.1 General
231(1)
4.4.2 Availability
232(2)
4.5 Ageing
234(1)
4.6 Internal Arc Fault
235(1)
4.6.1 General
235(1)
4.6.2 Passive Protection
235(1)
4.6.3 Arc Location
236(1)
4.7 Maintenance
236(1)
4.8 Repair
237(1)
4.9 Personnel Safety
237(1)
4.10 Insulation Coordination
238(9)
4.10.1 General
238(1)
4.10.2 Overvoltage Stresses on Typical GIL Applications
238(3)
4.10.3 Insulation Coordination for GIL
241(2)
4.10.4 Required Test Voltages
243(3)
4.10.5 Verification of the Calculated Data
246(1)
4.11 System Control
247(6)
4.11.1 Introduction
247(1)
4.11.2 Gas Density Monitoring
247(1)
4.11.3 Partial Discharge Measurement
248(1)
4.11.4 Temperature Measurement
248(1)
4.11.5 Overview of GIL Monitoring
248(5)
5 Environmental Impact 253(20)
5.1 General
253(1)
5.2 Visual Impact
253(1)
5.3 Electromagnetic Fields
254(13)
5.3.1 General
254(1)
5.3.2 Basic Theory
254(2)
5.3.3 Maximum Field Values
256(2)
5.3.4 Calculations
258(1)
5.3.5 Induced Reverse Enclosure Current
259(1)
5.3.6 EMF Measurements of GIL
260(7)
5.3.7 Direct Buried GIL
267(1)
5.4 Gas Handling
267(1)
5.5 Thermal Aspects
267(1)
5.6 Recycling
268(1)
5.7 Lifecycle Assessment
269(1)
5.8 CO2 Footprint
269(4)
6 Economic Aspects 273(6)
6.1 General
273(1)
6.2 Material Cost
273(2)
6.3 Assembly Cost
275(1)
6.4 Transmission Losses
276(1)
6.5 Cost Drivers
277(2)
7 Applications 279(44)
7.1 General
279(1)
7.2 Examples
280(32)
7.2.1 Schluchsee, Germany, 1975
280(3)
7.2.2 Windhoek, Namibia, 1977
283(1)
7.2.3 Joshua Falls, USA, 1978
284(2)
7.2.4 Bowmanville, Canada, 1985-7
286(3)
7.2.5 Shin-Meika Tokai Line, Japan
289(5)
7.2.6 PALEXPO, Geneva, Switzerland, 2001
294(2)
7.2.7 Baxter Wilson Power Plant, USA, 2001
296(1)
7.2.8 Sai Noi, Thailand, 2002
297(3)
7.2.9 PP9, Saudi Arabia, 2004
300(1)
7.2.10 Cairo North, Egypt, 2005
301(2)
7.2.11 Hams Hall, Midlands, UK, 2005
303(1)
7.2.12 Huanghe Laxiwa, China, 2009
304(1)
7.2.13 Kelsterbach, Germany, 2010
305(3)
7.2.14 Xiluodu, China, 2011
308(2)
7.2.15 Jingping I, China, 2011
310(2)
7.3 Future Application
312(2)
7.3.1 General
312(1)
7.3.2 Traffic Tunnels
312(1)
7.3.3 Roads and Highways
312(2)
7.3.4 Above-Ground and Cross-Country
314(1)
7.4 Case Studies
314(9)
7.4.1 Case Study: Metropolitan Areas
315(2)
7.4.2 Case Study: London
317(1)
7.4.3 Case Study: Berlin Diagonal
318(1)
7.4.4 Case Study: Mountains
319(2)
7.4.5 Case Study: Sea
321(1)
7.4.6 GIL/Overhead Line Mixed Application
321(2)
8 Comparison of Transmission Systems 323(12)
8.1 General
323(1)
8.2 GIL Features
323(1)
8.3 Technical Comparison
324(6)
8.3.1 General
324(1)
8.3.2 Losses
324(3)
8.3.3 Magnetic Fields
327(1)
8.3.4 Voltage Rating
328(1)
8.3.5 Current Rating
328(1)
8.3.6 Short-Circuit Rating
329(1)
8.3.7 Overvoltages
329(1)
8.3.8 Temperature Limits
329(1)
8.4 Site Comparison
330(2)
8.4.1 Accessibility
330(1)
8.4.2 Maximum Weight
330(1)
8.4.3 Maximum Size
330(1)
8.4.4 Type of Soil
331(1)
8.4.5 Transport Roads
331(1)
8.4.6 Space for Workshop On-Site
331(1)
8.5 Soft Parameters
332(1)
8.5.1 General
332(1)
8.5.2 Aesthetics
332(1)
8.5.3 Non-visibility
332(1)
8.5.4 Noises
332(1)
8.6 Economics
333(2)
9 Power Transmission Pipeline 335(14)
9.1 Feasibility Study
336(3)
9.2 Offshore Wind Energy in Europe
339(1)
9.3 Under Sea Tunnel System
339(5)
9.4 Offshore and Onshore PTPTM Constructions
344(2)
9.5 Next-Generation Technology
346(1)
9.6 Offshore Environment
346(3)
10 Conclusion 349(2)
References 351(10)
Index 361
Hermann J. Koch, Principle Expert,  Power Transmission, Siemens, Germany Mr Koch currently works in the field of high voltage switchgear and high voltage transmission lines with Siemens in Germany. He became Principal Expert after over-seeing the installation of the first second generation GIL (gas insulated transmission lines) in Geneva, Switzerland in 2001. Since then he has worked on many projects with Siemens. Mr Koch created a successful tutorial Gas Insulated Substations with the IEEE PES Substations Committee, which has been presented in more than twenty countries including the USA, Canada, South America and India.