Muutke küpsiste eelistusi

E-raamat: Gibbs Measures on Cayley Trees [World Scientific e-raamat]

(V I Romanovskiy Inst Of Mathematics, Uzbekistan)
  • Formaat: 404 pages
  • Ilmumisaeg: 30-Aug-2013
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814513388
Teised raamatud teemal:
  • World Scientific e-raamat
  • Hind: 153,38 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 404 pages
  • Ilmumisaeg: 30-Aug-2013
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814513388
Teised raamatud teemal:
The purpose of this book is to present systematically all known mathematical results on Gibbs measures on Cayley trees (Bethe lattices).The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure associated with the Hamiltonian of a physical system (a model) and generalizes the notion of a canonical ensemble. More importantly, when the Hamiltonian can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics such as biology, Hopfield networks, Markov networks, and Markov logic networks. Moreover, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy.The method used for the description of Gibbs measures on Cayley trees is the method of Markov random field theory and recurrent equations of this theory, but the modern theory of Gibbs measures on trees uses new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on trees, and nonlinear analysis. This book discusses all the mentioned methods, which were developed recently.
Preface vii
1 Group representation of the Cayley tree
1(18)
1.1 Cayley tree
1(2)
1.2 A group representation of the Cayley tree
3(1)
1.3 Normal subgroups of finite index for the group representation of the Cayley tree
4(4)
1.3.1 Subgroups of infinite index
8(1)
1.4 Partition structures of the Cayley tree
8(3)
1.5 Density of edges in a ball
11(8)
2 Ising model on the Cayley tree
19(48)
2.1 Gibbs measure
19(2)
2.1.1 Configuration space
19(1)
2.1.2 Hamiltonian
20(1)
2.1.3 The ground state
20(1)
2.1.4 Gibbs measure
20(1)
2.2 A functional equation for the Ising model
21(3)
2.2.1 Hamiltonian of the Ising model
21(1)
2.2.2 Finite dimensional distributions
22(2)
2.3 Periodic Gibbs measures of the Ising model
24(4)
2.3.1 Translation-invariant measures of the Ising model
24(2)
2.3.2 Periodic (non-translation-invariant) measures
26(2)
2.4 Weakly periodic Gibbs measures
28(9)
2.4.1 The case of index two
29(3)
2.4.2 The case of index four
32(5)
2.5 Extremality of the disordered Gibbs measure
37(7)
2.6 Uncountable sets of non-periodic Gibbs measures
44(7)
2.6.1 Bleher-Ganikhodjaev construction
44(7)
2.6.2 Zachary construction
51(1)
2.7 New Gibbs measures
51(3)
2.8 Free energies
54(7)
2.9 Ising model with an external field
61(6)
3 Ising type models with competing interactions
67(24)
3.1 Vannimenus model
67(9)
3.1.1 Definitions and equations
67(1)
3.1.2 Dynamics of F
68(2)
3.1.3 Periodic points
70(3)
3.1.4 Exact values
73(2)
3.1.5 Remarks
75(1)
3.2 A model with four competing interactions
76(15)
3.2.1 The model
76(2)
3.2.2 The functional equation
78(3)
3.2.3 Translation-invariant Gibbs measures: phase transition
81(3)
3.2.4 Periodic Gibbs measures
84(3)
3.2.5 Non-periodic Gibbs measures
87(4)
4 Information flow on trees
91(14)
4.1 Definitions and their equivalency
91(6)
4.1.1 Equivalent definitions
92(5)
4.2 Symmetric binary channels: the Ising model
97(4)
4.2.1 Reconstruction algorithms
99(1)
4.2.2 Census solvability
100(1)
4.3 q-ary symmetric channels: the Potts model
101(4)
5 The Potts model
105(16)
5.1 The Hamiltonian and vector-valued functional equation
105(3)
5.2 Translation-invariant Gibbs measures
108(7)
5.2.1 Anti-ferromagnetic case
108(1)
5.2.2 Ferromagnetic case
109(6)
5.3 Extremality of the disordered Gibbs measure: The reconstruction solvability
115(2)
5.4 A construction of an uncountable set of Gibbs measures
117(4)
6 The Solid-on-Solid model
121(24)
6.1 The model and a system of vector-valued functional equations
122(2)
6.2 Three-state SOS model
124(11)
6.2.1 The critical value β1cr
124(4)
6.2.2 Periodic SGMs
128(4)
6.2.3 Non-periodic SGMs
132(3)
6.3 Four-state SOS model
135(10)
6.3.1 Translation-invariant measures
135(2)
6.3.2 Construction of periodic SGMs
137(3)
6.3.3 Uncountable set non-periodic SGMs
140(5)
7 Models with hard constraints
145(76)
7.1 Definitions
145(4)
7.1.1 Gibbs measures
147(2)
7.2 Two-state hard core model
149(14)
7.2.1 Construction of splitting (simple) Gibbs measures
149(2)
7.2.2 Uniqueness of a translation-invariant splitting Gibbs measure
151(1)
7.2.3 Periodic hard core splitting Gibbs measures
152(2)
7.2.4 Extremality of the translation-invariant splitting Gibbs measure
154(2)
7.2.5 Weakly periodic Gibbs measures
156(5)
7.2.6 The model with two fugacities
161(2)
7.3 Node-weighted random walk as a tool
163(5)
7.4 A Gibbs measure associated to a κ-branching node-weighted random walk
168(6)
7.5 Cases of uniqueness of Gibbs measure
174(4)
7.6 Non-uniqueness of Gibbs measure: sterile and fertile graphs
178(14)
7.6.1 The Asymmetric Graphs
181(2)
7.6.2 The Wand and the Hinge
183(1)
7.6.3 The Stick
183(7)
7.6.4 The hinge
190(2)
7.7 Fertile three-state hard core models
192(16)
7.7.1 System of functional equations
193(2)
7.7.2 Translation-invariant Gibbs measures
195(8)
7.7.3 Periodic Gibbs measures
203(2)
7.7.4 Non-Periodic Gibbs measures: the case hinge
205(3)
7.8 Eight state hard-core model associated to a model with interaction radius two
208(13)
7.8.1 The system of functional equations
208(6)
7.8.2 Translation-invariant solutions
214(2)
7.8.3 Periodic solutions
216(5)
8 Potts model with countable set of spin values
221(10)
8.1 An infinite system of functional equations
221(3)
8.2 Translation-invariant solutions
224(4)
8.2.1 The set of solutions {ui} with Σ∞j=1 uj = ∞
224(1)
8.2.2 The set of solutions with Σ∞j=1 uj < +∞
225(3)
8.3 Exponential solutions
228(3)
8.3.1 Case θ > 1
228(1)
8.3.2 Case θ ≤ 1
229(2)
9 Models with uncountable set of spin values
231(32)
9.1 Definitions
231(2)
9.2 An integral equation
233(2)
9.2.1 The Potts model with uncountable spin values
235(1)
9.3 Translational-invariant solutions
235(6)
9.3.1 Case κ = 1
236(4)
9.3.2 Case κ ≥ 2
240(1)
9.4 A sufficient condition of uniqueness
241(10)
9.4.1 The Hammerstein's non-linear equation
244(2)
9.4.2 The uniqueness of fixed point of the operators Ak and Hk
246(4)
9.4.3 Physical interpretation
250(1)
9.5 Examples of Hamiltonians with non-unique Gibbs measure
251(12)
9.5.1 Case κ = 2
251(2)
9.5.2 Case κ = 3
253(2)
9.5.3 Case κ ≥ 4
255(8)
10 Contour arguments on Cayley trees
263(58)
10.1 One-dimensional models
263(15)
10.1.1 Phase transition
264(3)
10.1.2 Partition functions
267(4)
10.1.3 Phase-separation point
271(7)
10.2 q-component models
278(10)
10.2.1 Contours for the q-component models on the Cayley tree
278(3)
10.2.2 Additional properties of the contours
281(1)
10.2.3 The contour Hamiltonian
282(2)
10.2.4 The Potts model
284(3)
10.2.5 The SOS model
287(1)
10.3 An Ising model with competing two-step interactions
288(21)
10.3.1 Ground states
289(9)
10.3.2 Weakly periodic ground states
298(5)
10.3.3 The Peierls condition
303(1)
10.3.4 Contours and Gibbs measures
304(5)
10.4 Finite-range models: general contours
309(12)
10.4.1 Configuration space and the model
309(1)
10.4.2 The assumptions and Peierls condition
310(1)
10.4.3 Contours
311(4)
10.4.4 Non-uniqueness of Gibbs measure
315(2)
10.4.5 Examples
317(4)
11 Other models
321(46)
11.1 Inhomogeneous Ising model
321(5)
11.2 Random field Ising model
326(6)
11.3 Ashkin-Teller model
332(7)
11.3.1 Paramagnetic fixed point
335(1)
11.3.2 Non-trivial fixed points
336(3)
11.4 Spin glass model
339(2)
11.5 Abelian sandpile model
341(4)
11.6 Z(M) (or clock) models
345(6)
11.6.1 The model and equations
345(5)
11.6.2 Phases of Z(M) models
350(1)
11.7 The planar rotator model
351(2)
11.8 O(n, 1)-model
353(3)
11.9 Supersymmetric O(n, 1) model
356(2)
11.10 The review of remaining models
358(9)
11.10.1 Real values
358(4)
11.10.2 Quantum case
362(1)
11.10.3 p-adic values
363(4)
Bibliography 367(16)
Index 383