Muutke küpsiste eelistusi

E-raamat: Handbook of Cleaning in Semiconductor Manufacturing - Fundamental and Applications: Fundamentals and Applications [Wiley Online]

  • Formaat: 614 pages
  • Sari: Wiley-Scrivener
  • Ilmumisaeg: 04-Feb-2011
  • Kirjastus: Wiley-Scrivener
  • ISBN-10: 1118071743
  • ISBN-13: 9781118071748
  • Wiley Online
  • Hind: 336,17 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 614 pages
  • Sari: Wiley-Scrivener
  • Ilmumisaeg: 04-Feb-2011
  • Kirjastus: Wiley-Scrivener
  • ISBN-10: 1118071743
  • ISBN-13: 9781118071748
Provides an In-depth discussion of surface conditioning for semiconductor applications

The Handbook of Cleaning for Semiconductor Manufacturing: Fundamentals and Applications provides an in-depth discussion of surface conditioning for semiconductor applications. The fundamental physics and chemistry associated with wet processing is reviewed as well as surface and colloidal aspects of cleaning and etching.

Topics covered in this new reference include:





Front end line (FEOL) and back end of line (BEOL) cleaning applications such as high-k/metal gate post-etch cleaning and pore sealing, high-dose implant stripping and cleaning, and germanium, and silicon passivation Formulation development practices, methodology and a new directions are presented including chemicals used for preventing corrosion of copper lines, cleaning aluminium lines, reclaiming wafers, and water bonding, as well as the filtering and recirculating of chemicals including reuse and recycling Wetting, cleaning, and drying of features, such as high aspect ratio features and hydrophilic surface states, especially how to dry without watermarks, the abilities to wet hydrophobic surfaces and to remove liquid from deep features The chemical reactions and mechanisms of silicon dioxide etching with hydrofluoric acid, particle removal with ammonium hydroxide/hydrogen peroxide mixture, and metal removal with hydrochloric acid

The Handbook of Cleaning for Semiconductor Manufacturing: Fundamentals and Applications is a valuable resource for any engineer or manager associated with using or supplying cleaning and contamination free technologies for semiconductor manufacturing. Engineers working for semiconductor manufacturing, capital equipment, chemicals, or other industries that assures cleanliness of chemicals, material, and equipment in the manufacturing area will also find this handbook an indispensible reference.
Foreword xvii
Introduction xxi
Part 1 Fundamentals
1 Surface and Colloidal Chemical Aspects of Wet Cleaning
3(36)
Srini Raghavan
Manish Keswani
Nandini Venkataraman
1.1 Introduction to Surface Chemical Aspects of Cleaning
3(1)
1.2 Chemistry of Solid-Water Interface
4(7)
1.2.1 Surface Charging of Oxide Films in Aqueous Solutions
4(2)
1.2.2 Surface Charging of Silicon Nitride Films in Aqueous Solutions
6(1)
1.2.3 Electrified Interfaces: The Double Layer and Zeta Potential
6(1)
1.2.3.1 Oxide Films and Particles
7(3)
1.2.3.2 Nitride Films and Particles
10(1)
1.3 Particulate Contamination: Theory and Measurements
11(6)
1.3.1 Effect of the Electric Double Layer Formation on Particulate Contamination
11(2)
1.3.2 Direct Measurement of Interaction Forces between Particles and Surfaces
13(4)
1.4 Influence of Surface Electrical Charges on Metal Ion Adsorption
17(5)
1.5 Wettability of Surfaces
22(4)
1.5.1 Surface Tension and Surface Energy
22(1)
1.5.2 Adsorption Characteristics and Wettability Modification
22(4)
1.6 High Aspect Ratio Cleaning: Narrow Structures
26(4)
1.6.1 Rate of Liquid Penetration into Narrow Structures
27(3)
1.6.2 Enhancement of Liquid Penetration into Narrow Structures
30(1)
1.7 Surface Tension Gradient: Application to Drying
30(5)
1.7.1 Isopropyl Alcohol Surface Tension Gradient Drying
31(1)
1.7.2 Water Layer After Drying
31(1)
1.7.3 Alternate Chemicals for Drying
32(3)
1.8 Summary
35(4)
References
35(4)
2 The Chemistry of Wet Cleaning
39(56)
D. Martin Knotter
2.1 Introduction to Aqueous Cleaning
39(2)
2.1.1 Background of Aqueous Cleaning Chemistry
39(2)
2.2 Overview of Aqueous Cleaning Processes
41(1)
2.2.1 RCA Cleaning
41(1)
2.2.2 Modified RCA Processes
41(1)
2.2.3 Other Cleaning Processes
41(1)
2.3 The SC-1 Clean or APM
42(25)
2.3.1 Electrochemistry of SC-1
43(3)
2.3.2 Molecular Mechanism
46(2)
2.3.3 Etching Rate in APM
48(1)
2.3.4 Concentration Variations
49(4)
2.3.5 Concentration Monitoring and Control
53(2)
2.3.6 APM-related Surface Roughening
55(1)
2.3.6.1 Vapor Etching
55(2)
2.3.6.2 Galvanic Etching and Masking
57(4)
2.3.6.3 Catalyzed H2O2 Depletion
61(2)
2.3.7 Metal-ion Contamination and Complexing Agents
63(3)
2.3.8 Diluted APM
66(1)
2.4 The SC-2 clean or HPM
67(4)
2.4.1 Particle Deposition
68(1)
2.4.2 Hydrogen Peroxide Decomposition in SC-2
68(2)
2.4.3 Hydrochloric Acid Fumes
70(1)
2.4.4 Diluted HCI
70(1)
2.5 Sulfuric Acid-Hydrogen Peroxide Mixture
71(9)
2.5.1 Stripping and Cleaning Mechanism
73(1)
2.5.1.1 Dissolution Reaction
73(1)
2.5.1.2 Discoloration Reaction
74(2)
2.5.2 Particulate and Sulfate Contamination
76(3)
2.5.3 Alternatives
79(1)
2.5.3.1 Modification of SPM
79(1)
2.5.3.2 Sulfur Trioxide
79(1)
2.6 Hydrofluoric Acid
80(15)
2.6.1 Hydrogen Passivation
80(5)
2.6.2 Etching Rate Control
85(1)
2.6.3 Bath Monitoring
86(1)
2.6.3.1 Conductivity
86(2)
2.6.3.2 Near Infrared
88(1)
2.6.4 Contamination
89(2)
Acknowledgments
91(1)
References
91(4)
3 The Chemistry of Wet Etching
95(48)
D. Martin Knotter
3.1 Introduction and Overview
95(4)
3.1.1 Definition of Etching
96(1)
3.1.2 The Physics of Wet Etching
96(2)
3.1.2.1 Difference in Bond Strength
98(1)
3.1.2.2 Absence of the Proper Reactant
99(1)
3.1.2.3 Formation of Inhibiting Coatings
99(1)
3.2 Silicon Dioxide Etching
99(12)
3.2.1 Hydrofluoric Acid Etching
100(9)
3.2.2 Water-based Etching
109(2)
3.3 Silicon Etching
111(11)
3.3.1 Hydrofluoric Acid and Nitric Acid Mixture
113(3)
3.3.2 Potassium Hydroxide and Alcohol Mixtures
116(4)
3.3.3 Tetramethyl Ammonium Hydroxide Etching
120(2)
3.4 Silicon Nitride Etching
122(21)
3.4.1 Hydrofluoric Acid-based Etching Solutions
123(4)
3.4.2 Hot Phosphoric Acid Etching
127(11)
3.4.3 Water Etching
138(1)
Acknowledgements
139(1)
References
139(4)
4 Surface Phenomena: Rinsing and Drying
143(26)
Karen A. Reinhardt
Richard F. Reidy
John A. Marsella
4.1 The Surface Phenomena of Rinsing and Drying
143(1)
4.1.1 Introduction to Surface Phenomena in Rinsing
144(1)
4.1.2 Introduction to Surface Phenomena in Drying
144(1)
4.2 Overview of Rinsing
144(14)
4.2.1 Wafer Charging
145(1)
4.2.1.1 Charging from Immersion in Water
145(1)
4.2.1.2 Wafer Charging During Spinning
146(2)
4.2.2 Wetting a Surface
148(1)
4.2.2.1 Surface Energy and Surface Tension
148(2)
4.2.2.2 Wetting and Rinsing Small Features
150(1)
4.2.2.3 Wetting Rough Surfaces
151(3)
4.2.3 Silica in Water
154(1)
4.2.3.1 Oxidation of Silicon in Water
155(2)
4.2.3.2 Precipitation of Silica in Water
157(1)
4.3 Overview of Drying
158(11)
4.3.1 The Chemistry and Physics of Watermarks
158(1)
4.3.1.1 Watermarks Formation
158(3)
4.3.1.2 Watermarks on Wafers Caused by Cleaning
161(1)
4.3.1.3 Watermarks on Wafers Caused by Immersion Lithography
162(1)
4.3.2 Drying High Aspect Ratio Features and Stiction
162(2)
4.3.3 Adhesion of Particles during Rinsing and Drying
164(2)
Acknowledgements
166(1)
References
166(3)
5 Fundamental Design of Chemical Formulations
169(24)
Robert J. Rovito
Michael B. Korzenski
Ping Jiang
Karen A. Reinhardt
5.1 Introduction and Overview
169(1)
5.2 Historical Development of Formulations for the Integrated Circuit Industry
170(5)
5.2.1 Chemical Formulation Generations
170(1)
5.2.2 First Generation Oxidizing Chemicals
171(1)
5.2.3 Second Generation Solvent-based Formulations
172(1)
5.2.4 Third Generation Amine-based Formulations
173(1)
5.2.5 Hydroxylamine Photoresist Residue Removers
173(1)
5.2.6 Fluoride-containing Strippers and Post-etch Residue Removers
174(1)
5.2.7 Amine Post-etch Residue Removers for Copper
174(1)
5.3 Mechanism of Stripping, Cleaning, and Particle Removal
175(2)
5.4 Components and Additives in Chemical Formulations
177(3)
5.4.1 Base Chemical and Active Ingredient
177(1)
5.4.2 Buffering Agents
177(1)
5.4.3 Surfactants
178(2)
5.4.4 Chelating Agents
180(1)
5.4.5 Oxygen Scavenging or Passivating Agent
180(1)
5.5 Creating Chemical Formulations
180(8)
5.5.1 Overview of Techniques Used in Creating Chemical Formulations
181(1)
5.5.2 Formulation Design Models and Parameters
181(1)
5.5.2.1 Solubility Parameters
182(2)
5.5.2.2 Selective Solvency
184(1)
5.5.2.3 Kinetic Salt Effects
185(1)
5.5.3 Practical Considerations
185(1)
5.5.3.1 Bath Life and Bath Life Extension
185(2)
5.5.3.2 Materials Compatibility
187(1)
5.5.3.3 Tool Configuration - Single Wafer vs. Batch Processing
188(1)
5.5.3.4 Rinsability
188(1)
5.5.3.5 Shipping and Shelf Life
188(1)
5.5.3.6 Purity Level
188(1)
5.6 Environmental, Safety, and Health Aspects
188(5)
Acknowledgments
190(1)
References
190(3)
6 Filtering, Recirculating, Reuse, and Recycling of Chemicals
193(46)
Barry Gotlinsky
Kevin T. Pate
Donald C. Grant
6.1 Overview of Wet Chemical Contamination Control
193(2)
6.1.1 Contamination Control Challenges Relating to Chemical Distribution
194(1)
6.1.2 Use of Filtration to Control Particle Contamination
194(1)
6.1.3 Metrology Techniques for Particles
194(1)
6.1.4 Metrology Techniques for Dissolved Contaminants
195(1)
6.2 Bulk Chemical Distribution for Wet Cleaning Tools
195(7)
6.2.1 Bulk Chemical Delivery Systems
195(1)
6.2.2 Bulk Chemical Delivery System Design
196(1)
6.2.3 Particulate Purity Control for Bulk Chemical Delivery Systems
197(3)
6.2.4 Metallic Ion Purity Control for Bulk Chemical Delivery Systems
200(1)
6.2.5 Organic Purity Control for Bulk Chemical Delivery Systems
201(1)
6.2.6 Chemical Delivery Sub-systems
202(1)
6.3 Chemical Distribution, Filtering, and Recirculation Requirements for Wet Cleaning Tools
202(4)
6.3.1 Recirculating Immersion Tools
202(2)
6.3.2 Single Wafer Tools
204(2)
6.3.3 Wafer Drying
206(1)
6.4 Contamination Control Metrology
206(7)
6.4.1 Particle Measurement for Chemical Fluids
206(1)
6.4.1.1 Particle Measurement Methods
206(4)
6.4.1.2 Particle Sampling Locations
210(1)
6.4.2 Chemical Purity of Chemical Fluids
210(1)
6.4.2.1 Inorganic Contaminant Measurement Methods
211(1)
6.4.2.2 Inorganic Contaminant Sampling
212(1)
6.4.3 Chemical Handling System Component Purity
212(1)
6.5 Effects of Contamination
213(4)
6.5.1 Particulate Contamination
213(2)
6.5.2 Ionic and Metallic Contamination
215(1)
6.5.3 Organic Contamination
215(2)
6.6 Filtration
217(13)
6.6.1 Filtration Mechanisms
217(3)
6.6.2 Filtration Design and Materials
220(5)
6.6.3 Characterization of Filter Performance
225(4)
6.6.4 Filtration for Bulk Chemical Delivery Systems and Wet Clean Tools
229(1)
6.7 Chemical Blending, Recycling, and Reuse
230(4)
6.7.1 Chemical Blending
230(1)
6.7.1.1 On-site blending case - 50:1 diluted HF from 49 wt% HF
231(1)
6.7.2 Reprocessing and On-site Waste Treatment
232(1)
6.7.3 On-site Treatment of Waste Streams
233(1)
6.7.4 Deionized Water Reuse and Reclamation
234(1)
6.8 Summary
234(5)
References
235(4)
Part 2 Applications
7 Cleaning Challenges of High-K/Metal Gate Structures
239(46)
Muhammad M. Hussain
Denis Shamiryan
Vasile Paraschiv
Kenichi Sano
Karen A. Reinhardt
7.1 Introduction and Overview of High-K/Metal Gate Surface Preparation
239(14)
7.1.1 High-K Dielectric Evolution
240(1)
7.1.2 Metal Gate Evolution
241(2)
7.1.3 High-K/Metal Gate Integration and Structures
243(1)
7.1.3.1 Gate-First Process
243(2)
7.1.3.2 Gate-Last Process
245(3)
7.1.3.3 Comparison between Gate-First and Gate-Last Scheme
248(3)
7.1.3.4 Fully Silicided Process
251(2)
7.2 Surface Preparation and Cleaning
253(8)
7.2.1 Surface Cleaning Challenges Prior to High-K Deposition
253(1)
7.2.2 Pre-interfacial Oxide Formation Cleaning
253(1)
7.2.3 Interfacial Oxide Formation
254(1)
7.2.3.1 Hydroxyl-terminated Surface
254(1)
7.2.3.2 Interfacial Oxide Formation
255(3)
7.2.3.3 Thermal Oxidation
258(1)
7.2.3.4 Nitrided Surfaces
259(1)
7.2.3.5 Hydrogen-terminated Surface
259(1)
7.2.4 High-K Deposition on Germanium
260(1)
7.3 Wet Film Removal
261(3)
7.3.1 First Metal Gate Removal
262(2)
7.3.2 Replacement Gate Removal
264(1)
7.4 High-K Removal
264(9)
7.4.1 Challenges of Removing High-K Material after Etching
264(1)
7.4.2 Removal of High-K Dielectric
265(1)
7.4.3 Dry Removal
266(3)
7.4.4 Wet Removal
269(3)
7.4.5 Corrosion
272(1)
7.4.6 Combination of Wet and Dry Removal
272(1)
7.5 Resist Stripping and Residue Removal
273(12)
7.5.1 Plasma Stripping
274(2)
7.5.2 Wet Stripping
276(2)
7.5.3 Cleanliness Prior to Anneal
278(1)
Acknowledgments
278(1)
References
278(7)
8 High Dose Implant Stripping
285(42)
Karen A. Reinhardt
Michael B. Korzenski
8.1 Introduction and Overview of High Dose Implant Stripping
285(14)
8.1.1 High Dose Implant
286(2)
8.1.2 Photoresist Modifications Due to Implant
288(4)
8.1.3 Post-photoresist Removal Residue
292(3)
8.1.4 Silicon Loss and Silicon Dioxide Formation and Loss
295(3)
8.1.5 Dopant Deactivation
298(1)
8.2 High Dose Implant Cleaning and Stripping Processes
299(2)
8.2.1 Process Requirements
299(1)
8.2.2 Process Comparison: Wet and Dry
300(1)
8.3 Plasma Processing
301(6)
8.3.1 Photoresist Popping
301(3)
8.3.2 Plasma-induced Damage
304(1)
8.3.2.1 Charging Damage
304(1)
8.3.2.2 Physical Damage
305(1)
8.3.3 Stripping Process Chemistry
305(2)
8.4 Wet Processing
307(10)
8.4.1 Wet Processing after Plasma Processing
308(1)
8.4.2 Wet-only Processing Background
308(1)
8.4.3 Aqueous Wet-only Processing
309(3)
8.4.4 Semi-aqueous and Solvent Processes
312(1)
8.4.4.1 Selective Passivation
313(2)
8.4.4.2 Corrosion-free Compositions
315(1)
8.4.4.3 Crust Dissolution
316(1)
8.4.4.4 Corrosion Inhibitors
316(1)
8.5 Other Processing
317(10)
8.5.1 Water-assisted and Solvent-based Crust Removal
317(1)
8.5.2 Supercritical Processing
317(3)
8.5.3 High-pressure Processing
320(1)
8.5.4 Cryoaerosol Process
320(2)
Acknowledgments
322(1)
References
322(5)
9 Aluminum Interconnect Cleaning and Drying
327(28)
David J. Maloney
9.1 Introduction to Aluminum Interconnect Cleaning
327(2)
9.2 Source of Post-Etch Residues Requiring Wet Cleaning
329(9)
9.2.1 Post-tungsten Plug Etchback Cleaning
330(1)
9.2.2 Post-aluminum Line Etch Cleaning
331(5)
9.2.3 Post-via Etch Cleaning
336(2)
9.3 Chemistry Considerations for Cleans Following Etching
338(9)
9.3.1 Fluoride-based Cleaning Formulations
340(2)
9.3.1.1 Applications
342(1)
9.3.1.2 Process Conditions
343(1)
9.3.2 Cleaning with Hydroxylamine
344(2)
9.3.2.1 Applications
346(1)
9.3.2.2 Process Conditions
346(1)
9.4 Rinsing/Drying and Equipment Considerations
347(3)
9.4.1 Rinsing/Drying
347(2)
9.4.2 Equipment
349(1)
9.5 Alternative and Emerging Cleaning Technologies
350(5)
Acknowledgements
351(1)
References
351(4)
10 Low-k/Cu Cleaning and Drying
355(40)
Karen A. Reinhardt
Richard F. Reidy
Jerome Daviot
10.1 Introduction and Overview
355(4)
10.1.1 Copper Interconnects: Background and Applications
356(1)
10.1.2 Low-K Dielectrics: Background and Applications
356(1)
10.1.3 Copper and Low-k Integration
357(2)
10.2 Stripping and Post-etch Residue Removal
359(9)
10.2.1 Plasma Post-etch Stripping, Cleaning, Residue Removal, and Passivation
362(3)
10.2.2 Wet Post-etch Cleaning and Residue Removal and Drying
365(1)
10.2.2.1 Dilute Hydrofluoric Acid
365(1)
10.2.2.2 Semi-aqueous and Solvent Cleaning
366(1)
10.2.2.3 Fluoride-containing Aqueous Formulations
367(1)
10.2.2.4 Acidic Aqueous Formulations
367(1)
10.2.2.5 Semi-aqueous Alkaline Formulations
367(1)
10.2.2.6 Near-neutral Aqueous Formulations
368(1)
10.3 Pore Sealing and Plasma Damage Repair
368(5)
10.3.1 Pore Sealing
368(1)
10.3.1.1 Plasma Treatments
369(1)
10.3.1.2 Thin Sealing Layers
370(1)
10.3.1.3 Graded Pores
370(1)
10.3.1.4 Chemical Modification
370(1)
10.3.1.5 Determination of Pore Sealing Effectiveness
371(1)
10.3.2 Plasma Damage Repair
372(1)
10.4 Post-chemical Mechanical Polishing Cleaning
373(22)
10.4.1 Post-CMP Cleaning Defectivity Challenges
373(1)
10.4.1.1 Corrosion
373(3)
10.4.1.2 Particulate Contamination Defectivity
376(1)
10.4.1.3 Metallic Contaminants
377(1)
10.4.1.4 Watermarks and Stains
378(1)
10.4.1.5 Detrimental Effects on Low-k Dielectric: Cracks and Delamination
379(1)
10.4.1.6 Surface Conditioning and Material Integrity
380(1)
10.4.2 Post-CMP Cleaning: Processes and Formulations
380(1)
10.4.1.7 Particle Removal
381(4)
10.4.1.8 Megasonic
385(1)
10.4.1.9 Brush Scrubbing
386(1)
10.4.1.10 Corrosion Prevention
387(2)
10.4.3 Cost Effectiveness and Environmentally Friendly Processing
389(1)
References
389(6)
11 Corrosion and Passivation of Copper
395(34)
Darryl W. Peters
11.1 Introduction and Overview
395(1)
11.2 Copper Corrosion
396(7)
11.2.1 Pourbaix and Stability Diagrams
396(3)
11.2.2 Copper Corrosion and Oxidation
399(1)
11.2.2.1 Oxidation and Corrosion with Respect to pH
399(1)
11.2.2.2 Galvanic and Photo-induced Corrosion
400(2)
11.2.2.3 Examples of Corrosion - Post-etch and Post-CMP
402(1)
11.2.3 Corrosion Inhibitor Efficiency
402(1)
11.3 Copper Corrosion Inhibitors
403(17)
11.3.1 Azole Corrosion Inhibitors
404(1)
11.3.1.1 Benzotriazole
404(2)
11.3.1.2 Carboxybenzotriazol
406(1)
11.3.1.3 5-aminotetrazole
406(1)
11.3.1.4 1,2,4-triazole
406(1)
11.3.1.5 Influence of Solution pH
407(5)
11.3.1.6 Process Results of Azole Cleaning Solutions
412(2)
11.3.2 Oxygen Scavengers
414(1)
11.3.3 Diols, Triols, and Carboxylic Acids
415(1)
11.3.3.1 Corrosion Inhibition Efficiency
415(5)
11.3.4 Mercaptans
420(1)
11.4 Copper Cleaning Formulations
420(9)
11.4.1 Post-etch Cleaners
421(2)
11.4.2 Post-CMP Cleaners
423(2)
Acknowledgments
425(1)
References
425(4)
12 Germanium Surface Conditioning and Passivation
429(44)
Sonja Sioncke
Yves J. Chabal
Martin M. Frank
12.1 Introduction
429(2)
12.1.1 Germanium Use in Integrated Circuit Transistors
429(1)
12.1.2 Gate Stack Interface Preparation and Passivation
430(1)
12.1.3 Need for Passivation
430(1)
12.2 Germanium Cleaning
431(11)
12.2.1 Wet Chemical Compatibility and Etching Rates: A Historical Perspective
431(2)
12.2.2 Wet Chemical Compatibility and Etching Rates: Recent Results
433(1)
12.2.3 Metal Deposition on Germanium
434(3)
12.2.4 Metal Removal from Germanium
437(2)
12.2.5 Particle Deposition on Germanium
439(2)
12.2.6 Particle Removal from Germanium
441(1)
12.3 Surface Passivation and Gate Stack Interface Preparation
442(31)
12.3.1 Thermodynamic Stability of Native Oxides
442(1)
12.3.2 Oxidation
443(4)
12.3.2.1 Gate Stacks on Oxidized Germanium
447(1)
12.3.3 Nitridation and Oxynitridation
448(4)
12.3.3.1 Gate Stacks on Nitrided or Oxynitrided Germanium
452(1)
12.3.4 Hydrogenation
453(1)
12.3.4.1 Hydrogenation in Ultra High Vacuum
453(1)
12.3.4.2 Wet Chemical Treatment of Flat Single Crystal Germanium Surfaces
454(6)
12.3.4.3 Electrochemistry on Flat Single Crystal Germanium Surfaces
460(1)
12.3.4.4 Hydrofluoric Acid-treated Germanium Gate Stacks
460(2)
12.3.5 Chlorine Passivation
462(1)
12.3.5.1 Gate Stacks on HCl-treated Germanium
463(1)
12.3.6 Sulfur Passivation
464(3)
12.3.7 Silicon Passivation
467(1)
References
468(5)
13 Wafer Reclaim
473(28)
Michael B. Korzenski
Ping Jiang
13.1 Introduction to Wafer Reclaim
473(1)
13.2 Introduction to Silicon Manufacturing for Semiconductor Applications
474(4)
13.3 Energy Requirements for Silicon Wafer Manufacturing
478(1)
13.4 Test Wafer Usage and Wafer Reclaim
479(3)
13.4.1 Silicon Material Flow in a Wafer Fab
479(1)
13.4.2 Economics of Reclaiming Wafers
480(2)
13.5 Requirements for Wafer Reclaim and Recycle
482(2)
13.5.1 Reclaim Wafer Metrics
482(1)
13.5.2 Techniques for Measuring Wafer Reclaim Specs
483(1)
13.6 Wafer Reclaim Options
484(4)
13.6.1 External Reclaim
485(2)
13.6.2 Internal Wafer Reclaim Programs
487(1)
13.7 Types of Wafer Reclaim Processes
488(10)
13.7.1 Conventional Reclaim Processes
488(1)
13.7.2 Non-metal Reclaim Processes
488(4)
13.7.3 Metal Reclaim Processes
492(2)
13.7.4 Metal Contamination
494(4)
13.8 Formulated Reclaim Solutions
498(3)
Acknowledgements
498(1)
References
499(2)
14 Direct Wafer Bonding Surface Conditioning
501(44)
Hubert Moriceau
Yannick C. Le Tiec
Frank Fournel
Ludovic F. L. Ecarnot
Sebastien L. E. Kerdiles
Daniel Delprat
Christophe Maleville
14.1 Introduction and Overview of Bonding
501(6)
14.1.1 Wafer Bonding for Semiconductor Applications
503(1)
14.1.1.1 Silicon and Silica Direct Bonding
503(1)
14.1.1.2 Silicon-on-insulator Structures
504(1)
14.1.1.3 3D Integration Wafer Level Packaging
504(1)
14.1.1.4 Diverse Material Stacking
505(1)
14.1.1.5 Patterned Silicon-on-insulator Wafers
506(1)
14.1.1.6 Germanium-on-insulator Wafers
506(1)
14.1.2 Wafer Bonding Surface Conditioning
507(1)
14.2 Planarization and Smoothing Prior to Bonding
507(4)
14.2.1 Chemical Mechanical Planarization
507(2)
14.2.2 Surface Smoothing
509(2)
14.3 Wet Cleaning and Surface Conditioning Processing
511(8)
14.3.1 Process Flow
512(1)
14.3.2 Sulfuric Acid-Hydrogen Peroxide Mixture
513(1)
14.3.3 Deionized Water/Ozone Cleaning
513(1)
14.3.4 Standard Clean-1 Surface Conditioning
514(1)
14.3.5 Standard Clean-2 Cleaning
515(1)
14.3.6 Wafer Brush Scrubbing
515(1)
14.3.7 Wafer Drying
516(1)
14.3.7.1 Equipment
516(1)
14.3.7.2 Analysis
517(2)
14.4 Dry Surface Conditioning Processing
519(10)
14.4.1 Process Flow
519(1)
14.4.2 Plasma Activation
520(1)
14.4.2.1 Background of Plasma Processing
520(1)
14.2.2.2 Plasma Activation Mechanism
521(3)
14.2.2.3 Plasma Subsurface Impact
524(2)
14.4.3 Ultraviolet-Ozone Cleaning
526(1)
14.4.3.1 Carbon Contamination
526(1)
14.4.3.2 Ultraviolet-Ozone Cleaning
527(1)
14.4.3.3 Oxidation by Ultraviolet-Ozone Processing
528(1)
14.4.3.4 Surface Hydrophilicity
528(1)
14.4.3.5 Ultraviolet-Ozone Defect Densities
529(1)
14.5 Thermal Treatments and Annealing
529(5)
14.5.1 Pre-bonding Annealing
530(2)
14.5.2 Post-bond Annealing
532(1)
14.5.2.1 Degassing Species Limitation
532(1)
14.5.2.2 Effect of Interfacial Oxide Thickness on Bonding Defect Densities
533(1)
14.6 Conductive Bonding
534(11)
References
537(8)
Part 3 New Directions
15 Novel Analytical Methods for Cleaning Evaluation
545(20)
Chris M. Sparks
Alain C. Diebold
15.1 Introduction
545(1)
15.2 Novel Analytical Methods
546(1)
15.3 Recent Advances in Total Reflection X-ray Fluorescence Spectroscopy Analysis
547(6)
15.3.1 Alternative X-ray Sources for TXRF
547(2)
15.3.2 Surface Coverage of the Wafer
549(2)
15.3.3 Edge Contamination Monitoring of the Wafer
551(1)
15.3.4 Front and Back Surface Monitoring of the Wafer
552(1)
15.3.5 Contamination Analysis on New Materials
553(1)
15.4 Advances in Vapor Phase Analysis
553(2)
15.5 Trace Metal Contamination on the Edge and Bevel of a Wafer
555(1)
15.6 Kelvin Probe Technologies
556(2)
15.7 Novel Applications of Electron Spectroscopy Techniques
558(3)
15.8 Novel X-ray Spectroscopy Techniques
561(1)
15.9 Electrochemical Sensors
561(1)
15.10 Summary
561(4)
Acknowledgments
561(1)
References
561(4)
16 Stripping and Cleaning for Advanced Photolithography Applications
565(20)
John A. Marsella
Dana L. Durham
Leslie D. Molnar
16.1 Introduction to Advance Stripping Applications
565(1)
16.2 Historical Background
566(3)
16.2.1 Solvent-Based Strippers
566(2)
16.2.2 Hydroxyiamine Photoresist Residue Removers
568(1)
16.2.3 Fluoride-containing Strippers
568(1)
16.3 Recent Trends for Photoresist Stripping and Post-etch Residue Removal
569(3)
16.3.1 New Materials and Compatibility Issues
569(1)
16.3.2 Germanium
569(1)
16.3.3 Phase-change Memory Material
569(1)
16.3.4 Porous Low-k Materials
570(1)
16.3.5 High-k Materials
570(1)
16.3.6 High Dose Ion Implanted Photoresist
571(1)
16.4 Single Wafer Tools
572(4)
16.4.1 Back End of the Line Processing
573(1)
16.4.2 Front End of the Line Processing
574(1)
16.4.3 Photoresist Rework
575(1)
16.5 Wetting in Small Dimensions and Cleaning Challenges
576(3)
16.6 Environmental Health and Safety
579(2)
16.6.1 Challenges to the Semiconductor Industry
579(1)
16.6.2 Solvents
580(1)
16.7 The Future of Advanced Photoresist Stripping and Cleaning
581(4)
Acknowledgements
581(1)
References
581(4)
Index 585
Karen A. Reinhardt is Principle Consultant at Cameo Consulting in San Jose, California. Currently, Karen works with start-up cleaning companies to develop their technology for acquisition. Prior to forming a consulting company, Karen was employed at Novellus Systems, AMD, and Cypress Semiconductor. She has published more than 30 technical publications, has been awarded seven patents, and is co-editor of Handbook of Silicon Wafer Cleaning Technology.

Richard F. Reidy (Ph.D., Penn State) is interim Chair and associate professor of Material Science and Engineering at the University of North Texas. He has conducted research in interconnect processing and characterization with over 60 technical publications and three patents. He is a member of the International Technology Roadmap for Semiconductors.